Ingenieurblro flr Echtzeitprogrammierung

RTOS-UH

Introduction
and
Overview

Andreas Hadler
© 2000, IEP GmbH

IEP GmbH « Am Pferdemarkt 9c « D-30853 Langenhagen ¢ Tel.: +49 (511) 70832-0 « Fax: +49 (511) 70832-99 « E-Mail: info@iep.de
Web: http://www.iep.de T:\doku\tasks\TASKen.DOC, 05.07.2000

1 Contents

:_]: _———— _C_(_)D_t_e_rlt_s_ ooy eyl el '_'L'_2_:
2 RealliMme:-SYSIEMS ... s O
2.1 Solutions___ D)
2.2 Responsiveness and interrupts 6
2.3 Multitasking B
24 The RTOS-UH Offer o©
B.___RTOS-UH - The Operating SYSIemccoocovivomroremmmmrermssss s eorenrensereer: O
8.1 TasksandTasking 8
8.1.1Task-Properties 8
BLLY TaskName e O
BLL2 Swtus O
BAL3 _Priorty oo D)
8114 _Memory Requirement 10
B.115 ResidentTasks 10
B.1.L& _Autostart Capabilty ~_~ 10

8.2 Multi-Tasking -~~~ 10
821TaskStatuses .10
B.211 DORM_ o ______________iL
1Y U
B.203 SUSP e A2
B2i4 SCHD o ____________i2
o Y 1
B2i6 PWS? o ________________13
O I
Y
8.22TaskStatusChanges 13
O X
B.222 Temminate oA
B.223 Suspend 14
8224 Continue e eeeeeeemeeememmmeeememeeeen LD
B.225 Planningin =~~~ TTTmmmmmrmmmmmmmmmmmmmm 15,
8:2.2.5__ Plannir 0 I oo A
B.226 PlanOut_ il
B.2.2.7 _ Synchronization Operations il
B.228 Semaphores LD
B.22.9 Bolts 18
823EventEntry .10

2/52

s.3 Interrupt Routines .. 20i
83.1TmerInterrupt -22
8.4 SystemTasks 22
8.4.1 Support Tasks and Data Stations 23
S

BA L2 USER 28

BA L3 XCMMD .2

BA L4 ACIA, SCC RS232 e 2h
o U
BAL6 EDFEM %

B4 L7 ERROR 2D

BA L8 UHEM .2
T

B L NI o teeeeooceesieeoomceeeesieeooccsesiieecoocceesseoslO

BA LI PPROT s
47.-.-.-.-.I-f I.F.é.f.-.s-.f.e- _[-2-§-_.-;._.-._.-_.-._.-;._.-._.-_.-._.-;_.-._T_.-._.-;-._.-._T_.-._.-;T_.-._.-_.-._.-;_.-._.-_.-._.-;_.-._.-_.-._.-;._.-._.-_.-._.-;_.-._.-_.-._.-;_.-._.-_.-._.-;T_.-._.-_.-._.-;_.-._.-_.-._.-;_.-._.-_.-._.-;_.-._.-_.-._.-;_.-._.-;._.-.;_.-._-g-_?- .:
Al SystemStart 2T
4.1.1 Computer Configuration with External Terminal ________ " "~~~ __ 27
4.1.2 Computer Configurafion with Integrated Terminal __________ """~~~ 28
4.2 Making Contact || _ o .28
A2.1The SystemMessage ...
4.2.2 The Memory Structure "~~~ .29
4.2.3Die Taskeustande 3L
A.3 SomeExamples .38
4.3.1Inputof Commands -~~~ 38
4.3.2 Generationof Tasks 38
4.3.3 Chronological PlanningIns ___ """~~~ """~~~ 34
4.3.4Interrupt Planning Ins -~~~ "~ 3%
4.3.5 Suspend and Continue "~~~ 35

I.B- _________ =_r -}_{_é_-p_-o_-_-sy _§ _f_é_F_ﬁ_-'_'-l-'_'-'_'-_'-'_'-lT_'-'_'-_'-'_'-;_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-;_'-'_'-_'-'_'-lT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-LT_'-'_'-_'-'_'-lT_'-'_'-_'-'_'-;_'-'_'-_'-'_'-'_?_'-'_3-_6- .:
5.1 Queues 3]
5.2 DN, Drives and Device Names _________ 36
5.3 Structure and Use of CEs 38
631RequestaCE .38

__

5.3.3 Execution of the Input or Output """~~~ 42
6.3.4 Evaluation and Enable ofa CE ____~~~ 42
B4 Bxample .23
5.5 Devices and Data Stations - - - 4
6.5.1 Device Parameters - . .2
6.5.2 Serial Interfaces /A, /Bx, [Cx, DX 4§
e
B52.2 mput 46
B523 RestStatus AT
B524 The Effect of MODE e AT,
B-5:2:5 Edit Function T4
6.5.3 The Ramdisk - /ED, /EDB A8
B AN Nl 29
CFIQUIES o e DL
TABIES s

4/52

2 Realtime-Systems

RTOS-UH is a realtime multitasking operating system and differs in its very conception from most
other common operating systems. The operating system is an attempt to satisfy the special requi-
rements for measuring, control and regulation technology with two special strategies. As the name
realtime multitasking operating system itself implies: the operating system is realtime-capable and
can work with several tasks.

As a looser definition, you could say:

A system is called realtime-capable when it can react with sufficient speed to external
events at any time.

Although this definition spoils every purist’s fun in technical discussion, it is pragmatically accurate.
It normally makes no difference whether the system complies with the regulations of hard realtime
computing or is a real realtime system. Usually it are the pragmatic questions "Is the system fast
enough for my requirements? Can | control my machine/plant etc. with the system? Can | react
quickly enough to limit switches, inputs, etc.?" which are important. In the early days of using com-
puters in measuring, control and regulation technology, the much clearer term keep-step data pro-
cessing was used. Here it is clear what is meant: the computer can keep in step with its environ-
ment, i.e. react so quickly to external events that it does not miss anything.

2.1 Solutions

To fulfill these requirements of speed of reaction and computing speed, two different routes can be
followed essentially:

e "brute force"

By using pure computing force you can induce a behaviour which satisfies all realtime require-
ments. If a computer is not fast enough to solve a problem, the next fastest version is used. If
this is still not enough, 2, 4 or in gigantic solutions up to 65536 computers are used and the
problem is redefined until it can be solved in independent parts.

By mere use of material, every problem can be solved which is solvable in principle unless the
communication and synchronization of these sometimes countless computers require overpro-
portional computing capacity and the point is reached at which an increase in the number of
computers may even reduce the reaction capability.

» Algorithmic intelligence

The intellectual and if you like, aesthetically more satisfying solution is in the development of
suitable and efficient algorithms. As an example let us take the multiplication of two numbers:
the multiplication 7*3 can be broken down to the addition 3+3+3+3+3+3+3 (of course a little
thought will tell you that 7+7+7 is the better solution). However it does not become clear what
advantage the logarithming with subsequent addition offers until 17839*15757: instead of car-
rying out 15757 additions, the problem can be solved by forming two logarithms and adding
them.

Both methods of solution are successful, one with a greater material and the other with a greater
thinking effort.

5/52

2.2 Responsiveness and Interrupts

Realtime systems try to take some of the thinking workload off the user. The main problem in the
realization of controllers and regulators is guaranteeing sufficient speed of reaction to reliably con-
trol the system. In addition to calculating frequently time-consuming control algorithms, limit swit-
ches have to be monitored, limit values for pressure, temperature, etc. checked and reacted upon
in the prescribed time. The necessary reaction times are often very short in comparison with the
computing requirements of the control so that a great deal of thought needs to go into the maintai-
ning of the reaction time during processing of complicated control processes when programming
the controller. Realtime systems offer the programmer mechanisms for simple realization of high
speeds of reaction.

This high reaction speed is usually guaranteed by a sophisticated and efficient handling of program
interrupt signals, the interrupts. Interrupts are signals which are fed externally into the CPU of the
computer. When one of these signals becomes active, the central unit interrupts your current work
and branches to a special program section, the interrupt handler. Realtime systems are distinguis-
hed by the fact that this interrupt handling is particularly efficient and takes place according to a
standard procedure. Unlike common systems, a programmer of a realtime system can be certain
that the program interrupt is processed virtually delay-free and there is no need for him to program
interrupt mechanisms himself and continue running programs. The programmer can program the
two problems, the control algorithm and the reaction to limit switches almost independently and be
sure that the realtime system takes care of a suitable and fast switching between program secti-
ons. Of course the programmer must inform the system which program section is assigned to
which interrupt; however, this is far less trouble than programming the interrupt handler himself.

2.3 Multitasking

The second element for simplifying the programming of problems in measuring, control and regu-
lation technology is the so-called multitasking. A task is a program which can run independently. In
a computer capable of multitasking, several of these tasks may exist simultaneously and the com-
puter’s operating system takes care of assigning the computing capacity to the individual tasks.
The simplest assignment strategy is known under the term time-sharing: each task is assigned
computing capacity for a fixed time, a so-called time slot, usually between approx. 20 milliseconds
and 2 seconds and can then operate. At the end of a time slot the operating system carries out a
task change and executes another task.

The original concept which led to the development of multitasking was the use of a computer by
several users who can all work on one computer at the same time and run their programs quasi-
simultaneously. These so-called multi-user-systems enable a computer to be used simultaneously
by several users and save the investment in individual workstation computers. Of course there is
the added advantage that a single user has much more computing capacity at his disposal at times
when only a few users are working on the central computer than if he had only one workstation
computer.

The multitasking also offers advantages for programming system controls: the division of a control
task into complex algorithms and reaction-critical limit value checks described above can be done
efficiently and elegantly by using multitasking. Both problem solutions are formulated in separate
tasks and programmed independently of each other. The operating system takes care of switching
between the individual tasks.

To ensure a sufficiently fast reaction of the program package consisting of several tasks to external
events, the task switching mechanism of the operating system must be designed according to the
special requirements of the realtime programming. Interrupts (externally applied interrupt signals)

6/52

can be used for this. This has two advantages over the pure time slot control: on the one hand task
changes only take place when they are really necessary and on the other hand, tasks which pro-
cess complex algorithms and do not wish react to interrupts run undisturbed.

2.4 The RTOS-UH Offer

RTOS-UH is an attempt, with as fast as possible and simple reaction to interrupts and a clear mul-
titasking concept, to provide the tools to simplify the solving of special problems in measuring,
control and regulation technology by the programmer. The multitasking which is only available on
system level under other systems is made directly accessible to every programmer under RTOS-
UH and can be used very clearly for solving smaller problems. RTOS-UH supports, especially in
connection with the programming language PEARL (Process and Experiment Automation Realtime
Language), the division of a problem solution into more manageable individual programs (tasks)
which can be programmed, tested and executed independently of each other. With the possibility
of assigning priorities to individual tasks a problem-oriented process of the entire program system
is ensured. The operating system assigns the individual tasks computing time in the order of their
priority. Together with the very fast reaction to interrupts and the possibility of planning and execu-
ting task changes as a reaction to interrupts an efficient tool is provided.

Since using this system requires the programmer to get used to an unfamiliar working method - the
division of a problem into smaller independent parts, the definition of the individual tasks with their
priorities, the recognition of necessary synchronization of the individual tasks, the assignment of
individual program sections to individual interrupts, etc. - it is advisable to study the fundamental
functional principles of the RTOS-UH to ensure successful and efficient use of the system.

Starting with a description of the different task properties and statuses, the significance of the tasks
which already exist permanently in the system and their interaction with interrupt routines is explai-
ned below. When you are familiar with the principle function of the RTOS-UH, the I/O system and
its function which differs very greatly from common operating systems, is described. Based on this,
the operation of the RTOS-UH-own editor is then explained to give a few examples of what has
been explained up till now. A short description of the programming language PEARL ends this
overview of the RTOS-UH.

The type of description will vary greatly: cursory overviews and detailed explanations will be mixed
up with each other. It is necessary to study at least the first few sentences of a chapter to get a
rough idea of the operating system and its special features. Detailed explanations can be ignored
initially but are essential for effective work with the operating system.

This text is not meant to replace study of the system manual and therefore does not give instructi-
ons on actions in the correct detail in places, it does however help to understand the often rather
abstract explanations of the manual.

In this overview, theory and practice are dealt with separately because the author was of the opini-
on that actual working on the computer requires at least some knowledge of the functioning of the
operating system. This is also meant to avoid that working on the computer shows up too many
phenomena with which you are not familiar in theory which you would initially have to avoid ele-
gantly.

7152

3 RTOS-UH - The Operating System

RTOS-UH as an operating system should manage the resources of a computer (memory, proces-
sor, 1/0 interfaces) and provide user programs with service for simple use of these resources. To
fulfill this task efficiently, RTOS-UH makes use of three tools: these are

e an operating system nucleus which controls the manipulation of tasks by system calls, traps
and manages the system memory,

» interrupt routines which handle fundamental I/O operations and
» system tasks which take care of more complex management tasks.

Since the term task is fundamental to understandling RTOS-UH, it should be explained in more
detail. Then it will be explained why interrupt routines are part of the operating system and how
these cooperate with the system tasks.

3.1 Tasks and Tasking

The term task is fundamental to the RTOS-UH and identifies an independently runnable program.
Under RTOS-UH these tasks may have different properties and be in different statuses. The ope-
rating system divides the available computing capacity between the individual tasks (multitasking)
such that the change from one task to another is possible at any time (realtime capability). In multi-
processor computers, several tasks may be active simultaneously, in a single-processor system of
course only one task can be executed at once. In the text which follows, a single-processor system
is always assumed, the analogous transposition to a multi-processor system is relatively easy.

3.1.1 Task-Properties

RTOS-UH understands a task as an independently operating program. In order to be recognized
as a task under RTOS-UH, this program must have its own properties. These properties must have
been noted by the respective task in a management block, the task header, according to the rules
of RTOS-UH.

8/52

TID
Name
Status
Priority
Task- -
Head Memory capacity
General Memory addresses
management
information
Task- Code (program)
Body

Abbildung 3-1: Structure of a task

High-level-language programmers normally do not need to give any thought to the generation of
these task headers, this is taken over by the compiler, assembler programmers, however, must
generate this headers themselves. After loading a program, this task header must be available in
the memory; if under RTOS-UH a task address is referred to, the address of the header is meant,
the so-called TID (task identification). In addition to the information explained explicitly here, the
task header contains a lot more data which is partly only operating system-internal.

3.1.1.1 Task Name

The task name is, next to the TID, another important part of the task. All tasks in a computer
should not only be distinguished by their TIDs but also by their names. Problems with identical na-
mes are posed at the latest when a task is to be started by its name.

A task name may consist of a maximum 24 characters at present.

3.1.1.2 Status

The status of a task indicates whether and if necessary how a task is involved in any activities. The
status can be controlled by the operator with commands and by tasks and with the operating sy-
stem by means of tasking operations.

3.1.1.3 Priority

The most important property of a task for RTOS-UH is its urgency, the priority. RTOS-UH divides
the processor capacity between the runnable tasks according to their individual priority. Priorities
are specified as integers in the range -32768...32767 in descending order of priority. A task with
priority 1 is therefore more urgent than a task with priority 5. Unlike numeric values, the task with

9/52

priority 1 is said to have a higher priority than the task with priority 5. Negative values are reserved
for the operating system itself, at least intentionally.

Every time the RTOS-UH has reason to assign the processor to a task, i.e. to execute a task, the
process switch of the RTOS-UH, the so-called Dispatcher, inspects a list of available tasks and
assigns the processor to the task with the highest priority which is ready to run. In case no task is
ready to run, RTOS-UH contains an empty task, task named IDLE, which has the lowest priority
and which is always ready to run. This task has no activities but is very important to the function of
the operating system.

3.1.1.4 Memory Requirement

In order to be able to keep as many tasks as possible in the computer, RTOS-UH only assigns the
tasks memory space for their local variables when starting. The size of the necessary task working
memory, the so-called task workspace (TWSP), must therefore be entered in the task header.
When starting a task, under RTOS-UH, activation of a task is referred to, RTOS-UH assigns this
task memory space of sufficient size. If a task ends its work, under RTOS-UH this is referred to as
terminating a task, this TWSP is free again and can be assigned by the operating system.

3.1.1.5 Resident Tasks

If a task declares itself resident, its TWSP is only assigned by the operating system the first time it
is activated. This method has the advantage that new memory space does not need to be assi-
gned (time-saving) every time for frequently activated tasks and on the other hand enables a task
to keep static variables, i.e. variables the values of which are retained up to the next activation
when terminated.

3.1.1.6 Autostart Capability

Especially important for stand-alone systems: if a task declares itself as an autostart task, it will be
activated by the operating system as soon as this has started. All tasks which do not have this pro-
perty are not activated automatically. They can only be started by other tasks or by operating
commands.

Under RTOS-UH there is no other way for tasks to become runnable of their own accord.

3.2 Multi-Tasking

The concept of RTOS-UH is based on the idea of multitasking, the ability of the operating system
to handle several autonomous (and independently runnable) programs (quasi) simultaneously.
These tasks may be available simultaneously in the computer; the operating system assigns the
available processor capacity to the tasks which are ready to run.

3.2.1 Task Statuses

The phrase ready to run already indicates that RTOS-UH can identify different operating statuses
for a task. RTOS-UH manages the tasks in their different operating statuses and provides mecha-
nisms for initiating and checking status changes. Figure 2.2 shows the most important operating
statuses and the designation of the possible changes. The following text explains this.

sind alle Betriebszustande sowie die moglichen Ubergange nebst den diese veranlassenden Be-
dienbefehlen exemplarisch aufgefiihrt. Der folgende Text gibt hierzu Erlauterungen.

10/52

In addition to the basic task statuses DORM (dormant), RUN (ready to run), SUSP (suspended),
SCHD (scheduled) and SEMA (waiting for synchronization) which can be achieved directly by task
or operator activities, the more system-internal statuses I/0O? (waiting for termination of an I/O ope-
ration), PWS? (waiting for workspace), ???? (multiple blocking) and CWS? (waiting for 1/0 space)
are also described here.

TERMINATE
Terminieren
SCHD
REQUEST RELEASE
ACTIVATE SUSPEND
Aktivieren Aussetzen
DORM
RUN SCHD >
Terminieren
Fortfuhren
TERMINATE CONTINUE
SCHD
Terminieren
TERMINATE
Abbildung 3-2: Status changes
Italics: Name of the status change
Normal: Command for the status change
3.2.1.1 DORM

The simplest operating status is called DORM (dormant). A task in the DORM status is loaded in
the computer but is not ready to run. It will never be assigned processor space unless its operating
status is changed by external influences. A dormant task only takes up space from the operating
system for its code and if nec. (resident tasks!) for static variables. In all other operating statuses a
task certainly has memory space for its TWSP (only exception see change Activate).

11/52

3.2.1.2 RUN

A task is ready to run in the RUN status. As soon as no task with a higher priority is ready to run,
this task is assigned the processor and can execute its job. The change from the DORM status to
the RUN status is known as Activation of this task. As soon as the task is assigned the processor it
starts processing at the start of the program. It can only be activated externally, i.e. by another task
or by the operator with the ACTIVATE taskname command. It is obvious that a task cannot change
itself from the DORM status to the RUN status because it has no processor space in the dormant
status and cannot possibly initiate its own activation. However, a task which has started running
can activate itself. In this case this activation is buffered, i.e. saved for later. If the task wants to or
has to return to the DORM status later, RTOS-UH determines this buffered activation and resets
the task to the RUN status. The task is then executed again from the start. RTOS-UH can buffer up
to 3 activations for every task.

Allerdings kann eine einmal laufende Task sich selbst aktivieren. In diesem Fall wird diese Aktivie-
rung gepuffert, d. h. fur spater aufgehoben. Will oder soll diese Task spater wieder in den Zustand
DORM Uibergehen, so stellt RTOS-UH diese gepufferte Aktivierung fest und versetzt die Task wieder
in den Zustand RUN. Die Task wird dann erneut von Beginn an ausgefuhrt. RTOS-UH kann max. 3
Aktivierungen fir jede Task puffern.

3.2.1.3 SUSP

A task in the SUSP status, suspended, is ready to run in principle and has been assigned proces-
sor space once or several times but does not want any processor space at present. It has suspen-
ded the processing of its job voluntarily or controlled externally for an indefinite period. RTOS-UH
bypasses a suspended task when assigning the processor capacity.

The SUSP status can be set by the operator with the SUSPEND command taskname. The task
concerned stops processing where it is and can be continued later with the CONTINUE taskname
command.

3.2.1.4 SCHD

A task is scheduled. The status is similar to SUSP in that this task is principally ready to run but
does not want any processor space at present. However, a condition is already defined for this
task under which it returns to the RUN state. This condition may be a scheduled planning (e.g. by
the operator AT 17:00:00 ACTIVATE taskname) or a planning in to an interrupt (e.g. by the opera-
tor WHEN EV 00000001 ACTIVATE taskname); see page 15 for more details on planning in.

The change to the SCHD status is possible from all statuses except SEMA. In particular the status
SCHD alone does not reveal whether this task has already been assigned processor space or is
only activated by the planning in.

If the given planning in condition is satisfied, RTOS-UH changes the appropriate task automatically
to the RUN status and assigns processor space if no task of higher priority is ready to run.

3.2.1.5 1/0?

A task is waiting for termination of an input or output. Under RTOS-UH the actual input and output
operations are not carried out directly by the initiating task (see page 41) but by so-called support
tasks. A task in the 1/0O? status has triggered an input or output operation and is waiting for its ter-
mination. For this period it is not assigned processor space. As soon as the 1/O operation is termi-
nated, RTOS-UH returns this task to the RUN status.

12/52

3.2.1.6 PWS?

A task is waiting for assignment of memory space, procedure workspace, PWSP. It has asked the
operating system for workspace of a size which is presently unavailable. Since RTOS-UH manges
the memory dynamically, sufficient space may become available at any time. RTOS-UH then satis-
fies the request for workspace (in the order of priority if several tasks are waiting) and switches the
task immediately to the RUN status.

3.2.1.7 CWS?

A task is waiting for workspace to be assigned for I/O operations. This is a special form of the PWS
? status which is not due to there not being enough free space in the system but to exceeding the
space contingent for I/O operations. RTOS-UH limits the workspace provided for every single task
at every single activation for I/O operations to 2 KB to prevent individual tasks reducing the system
workspace excessively by numerous outputs.

3.2.1.8 7?77

A task is multiply blocked, e.g. if it was suspended by the operator when still in the PWS? status.
The output of ???? as a task status is to be considered as an act of desperation on the part of the
operating system which is no longer able to report the task status in one word. Internally the com-
bination of different statuses is handled correctly.

However, the output of ???? as a task status may also point to an act of self defence by the opera-
ting system: if a task has executed an illegal action which the operating system can no longer pre-
vent but only observe (e.g. memory access error for priveleged memory accesses) the task is put
in the ??7?7? status to reliably prevent the task from continuing.

3.2.2 Task Status Changes

Having explained the individual statuses which the tasks may have, the possibilities of initiating
and influencing status changes are described here. This only concerns the basic task statuses
DORM, RUN, SUSP, SCHD and SEMA. The operations which can initiate status changes are Acti-
vate, Terminate, Suspend, Continue, Plan in, Plan out and synchronization operations as well as
the entry of times and interrupts.

The effect of the operation and the operating commands to be given (and the analogous PEARL
instructions) are described roughly, you will find detailed descriptions in the manual, chapter Ope-
rating Commands, and for the assembler programmer in the manual, chapter Traps.

3.2.2.1 Activate

Activate only has a direct effect on tasks in the DORM status: they are switched to the RUN status
and program execution begins with the assignment of the processor at the start of the program.
Activation of a task in another status is possible and causes a so-called buffered activation. RTOS-
UH remembers (in the task header, where else?) that this task has been activated and starts it
again from the start of the program as soon as it wants to go back into the DORM status.

In the Activation RTOS-UH first assigns the task space for its local variables (TWSP), then the task
is started from the beginning. If there is not enough space in the system, the task is still switched to
the RUN status. RTOS-UH then checks for every change in the space assignment whether the
request can be granted and assigns the processor only if the task has sufficient TWSP. The acti-
vation can be initiated by the user or any other task. Tasks can activate themselves and other
tasks.

13/52

Activation is initiated by the operating command ACTIVATE taskname, also in the abbreviated
forms A taskname and ‘Taskname or simply by specifying the taskname. In PEARL, the
ACTIVATE instruction is available, assembler programmers can use the traps ACT and ACTQ.

ACTIVATE Taskname, auch in den Kurzformen A Taskname und * Taskname

oder allein durch die Angabe des Tasknamens veranlasst. In PEARL steht hierzu die ACTIVATE-
Anweisung zur Verfigung, Assembler-Programmierer kdnnen die Traps ACT und ACTQ benutzen.

3.2.2.2 Terminate

Termination is the opposite action to activation. The execution of a task is aborted at the point
which the task has reached. The task is immediately switched to the DORM status unless there is
a buffered activation.

When terminating, all assigned space is withdrawn from the task (exception: TWSP of resident
tasks and 1/0 memory sections) and declared as free space. If a task has already triggered I/O
operations which are not yet ended, the following procedure runs: all outputs are executed, all in-
puts except those which may be currently running are rejected, i.e. if a task has triggered inputs,
only those inputs which are currently being processed by an I/O support task are finished, all other
inputs are rejected.

- alle Ausgaben werden durchgefihrt

- alle Eingaben, bis auf evtl. gerade in Bearbeitung befindliche, werden verworfen, d.h. hat eine
Task Eingaben veranlasst, so werden nur diejenigen Eingaben, die gerade von einer 1/O-
Betreuungstask bearbeitet werden, zu Ende bearbeitet, alle anderen Eingaben werden ver-
worfen.

Termination is possible in every task status. Even a task which is already DORM can be termina-
ted; the operating system does not execute any actions in this case, however. The termination can
be initiated by the operator and by another task; for tasks both self and external termination is
permitted.

Termination is initiated by the operating command TERMINATE taskname, also in the abbreviated
form T taskname, by the PEARL instruction TERMINATE and the traps TERMI, TERME, TERMEQ
and TERV.

TERMINATE Taskname, Kurzform T Taskname,

durch die PEARL-Anweisung TERMINATE und die Traps TERMI, TERME, TERMEQ und TERV ver-
anlasst.

3.2.2.3 Suspend

Suspend switches a task from the RUN to the SUSP status. The execution of the task is suspen-
ded for an indefinite period, the task is frozen so to speak in its momentary status. A suspended
task is bypassed in the assignment of processor workspace. All local variables are retained as well
as every assigned memory. I/O operations triggered by the task are executed.

Suspend can be initiated both by the operator and by tasks; tasks can suspend execution of them-
selves or other tasks. For a single task it is possible to suspend with a continue condition, see
Planning in with suspend. Suspend is initiated by the operating command SUSPEND taskname,
abbreviated form SU taskname, the PEARL instruction SUSPEND and the trap SUSP.

SUSPEND Taskname, Kurzform SU Taskname,

14/52

die PEARL-Anweisung SUSPEND sowie den Trap SUSP.

3.2.2.4 Continue

Continue is the opposite operation to suspend. A task is switched from the SUSP status to the
RUN status, i.e. it is immediately reconsidered for the assignment of processor space. The task
resumes its activity at exactly the same place as it was suspended. For the task itself no difference
is noticeable from uninterrupted execution except for a change in the time.

Continue can be initiated by the operator and by another task. It should be obvious that a suspen-
ded task has no way of recontinuing itself, unless it starts the suspension with a planned in conti-
nue (see planning in).

CONTINUE Taskname, kurz CONT Taskname,
the PEARL instruction CONTINUE and the traps CON and CONQ.

3.2.2.5 Planning In

Planning ins are the nucleus of RTOS-UH. The ability to make activation and continuance of tasks
dependent on the occurence of different events is an essential feature of the operating system and
enables program systems to be created which can react very quickly and very flexibly to external
situations.

Planning ins can be distinguished on the one hand by the type of event, time or interrupt and on
the other hand by the type of planned operation, activation or continue.

All planning ins have in common the status change from DORM, RUN or SUSP to the SCHD sta-
tus. The planning ins can be made by the operator or a task, independent planning in of a task is
also possible (of course not if this task is in the DORM status).

» chronologically planned activation

A chronologically planned activation leads to starting a task at a specified time or after a speci-
fied time. It can be determined that this activation be repeated at certain intervals und this cy-
clic planning can be restricted to a certain period of time. RTOS-UH manages time and durati-
on with the resolution of 1 ms; the longest processable duration is approx. 24 days.

Planning in to a time is executed by the operating command
AT Uhrzeit ACTIVATE Taskname,
planning in to a duration with the command
AFTER Zeitdauer ACTIVATE Taskname.
The PEARL instructions correspond to the operating commands.
» cyclic planning in
A cyclic planning in is executed with the operating command
ALL Zeitdauer ACTIVATE Taskname
and can be limited to a certain period of time in the form
ALL Zeitdauer DURING Zeitdauer ACTIVATE Taskname

Instead of limiting to a specific period of time, a time for the last activation can be given in the
form

ALL Zeitdauer UNTIL Uhrzeit ACTIVATE Taskname

15/52

gegeben werden. The PEARL instructions correspond to the operating commands. Cyclic
planning ins in the simple form result in immediate activation, i.e. the first of the cyclic activati-
ons takes place immediately. If this is not desired, the cyclic planning in can be combined with
planning in to a time or a duration, e.g..

AFTER Zeitdauer ALL Zeitdauer DURING Zeitdauer ACTIVATE Taskname
or
AT Uhrzeit ALL Zeitdauer UNTIL Uhrzeit ACTIVATE Taskname

Here too the PEARL instructions are identical to the operating commands. Assembler pro-
grammers have the traps TIAC and TIACQ at their disposal which can be used for all chrono-
logically planned activations.

activation planned in to interrupt

Very important for the realtime operating system is the ability to react quickly to external
events. External events are events which occur asynchronously to the program run and which
are signalled to the processor by the periphery, so-called interrupts (in the regular program
run).. RTOS-UH can make the activation of tasks dependent on the appearance of these inter-
rupts, i.e. if an interrupt occurs, the task planned in for it is activated. If this task has a high prio-
rity the processor is assigned immediately and tasks of lower priority cannot obstruct handling
of this interrupt situation.

Planning in to an interrupt is executed with the command

WHEN Interruptkennzeichnung ACTIVATE Taskname,
the same PEARL instruction or the traps ACTEV or EVACTQ..
chronologically planned in continuation

Chronologically planned in continuances correspond to the chronologically planned in activati-
ons, whereby neither a cyclic planning in nor limiting to a certain period of time or up to a cer-
tain time are possible. A chronologically planned in continuance is defined with the operating
commands

AT Uhrzeit CONTINUE Taskname
or
AFTER Zeitdauer CONTINUE Taskname,
the analogous PEARL instructions or the traps TICON or TICONQ.

If a task wishes to suspend its execution for a certain time, it can do so with the PEARL in-
structions

AT Uhrzeit RESUME
and
AFTER Zeitdauer RESUME

or the trap TIRE. The task puts itself in the SCHD status and rejects assignment of processor
capacity until the desired time is reached or the desired period of time has expired.

planned in continuance to interrupt

The continuance planned into an interrupt can be understood as analogous to activation plan-
ned into an interrupt. For a task, it is defined that it is to be continued when an interrupt signal
arrives. On condition, however, that this task is suspended until the interrupt arrives, otherwise

16/52

the error message taskname NOT SUSPENDED appears when the interrupt arrives because it
is impossible to continue a task which has not been suspended. Planning in is defined by the
operating command

WHEN Interruptkennzeichnung CONTINUE Taskname,
the analogous PEARL instructions or the traps CONEV or EVCONQ.

If a task wishes to suspend itself at the same time and plan in continue at an interrupt, it can
use the PEARL instruction

WHEN Interruptkennzeichnung RESUME,
or the combination of the traps CONEV or EVCONQ with the trap SUSP.

3.2.2.6 Plan Out

Planning out is the opposite operation to planning in. Planning outs can only be done generally for
a task, i.e. differentiation according to the type of planning in is not possible. All the planning ins
peformed for a task are deleted by a planning out. A task which is in the process of running will not
be terminated by this, the current run status of the task concerned is not changed.

The most common changes of status are SCHD - DORM, if a task was planned in for activation
and SCHD - SUSP, if a task was planned in for continue. A task can also delete its own planning
ins.

The planning out is achieved by the operating command
PREVENT Taskname,
the PEARL instructions PREVENT, if nec. with taskname, and the traps PREV and PREVQ.

3.2.2.7 Synchronization Operations

In a multitasking operating system it is often the case that several tasks need to access the same
data base. If a task changes this data base, it must be ensured that the other tasks which only read
out the data base always obtain consistent data. This requirement cannot be satisfied by the prio-
rity selection alone:

» If the changing task has the highest priority, it may make all changes unhindered but could in-
terrupt a reading out task in the middle of the read process which leads to inconsistent data in
the reading out task.

» If the changing task has the lowest priority, it can be interrupted in the middle of a data change,
which means a reading out task gets inconsistent data.

To solve this problem, RTOS-UH provides synchronization variables, so-called semaphores, italian
for traffic lights, and bolts.

3.2.2.8 Semaphores

The function of semaphores can be explained best by their similiarity with traffic lights. In the ex-
ample, there is a bottleneck in the road which can be blocked off for entry of vehicles by the traffic
lights on both sides. Induction coils are installed at both entry points in the direction of travel which
reports request to drive in and detects leaving the bottleneck.

The simplest case consists of two vehicles approaching the bottleneck from opposite directions.
The vehicle which reaches the drive in induction coil first gets green to proceed and automatically
sets red for the opposite side so that the opposite vehicle’s request to drive in is rejected. The ve-

17/52

hicle clears the bottleneck when it drives over the exit induction coil and sets green for the waiting
vehicle.

Transposed to semaphores under RTOS-UH, only one new terminology is required: the requesting
entry permission by driving over the entry induction coil is called a REQUEST operation, exiting the
bottleneck is called a RELEASE operation. The individual tasks can be seen as vehicles: task A
places a request to the semaphore bottleneck and occupies the bottleneck. This operation has no
effect on the status of task A. If task B then also executes a REQUEST operation, e.g. because it
has become ready to run by an interrupt signal or an operator intervention and has been assigned
the processor because of its higher priority, it is suspended, i.e. its execution is suspended despite
the higher priority and its status is set to SEMA, i.e. waiting for the release of a semaphore. Re-
assignment of the processor is necessary and task A has a good chance of being the highest prio-
rity, runnable task and being assigned the processor.

When task A leaves the bottleneck it carries out a RELEASE operation to the semaphore bottle-
neck. This releases the bottleneck again. Transposed onto the computer, this means a new pro-
cessor assignment is necessary and task B is assigned the processor on account of its higher prio-
rity.

Transposed from road bottlenecks to data sections, the integrity of the data base is guaranteed by
the synchronization operations REQUEST and RELEASE.

From the operator level, semaphores can only be accessed through their address with the instruc-
tions

REQUEST Semaphoradresse
and
RELEASE Semaphoradresse
ansprechbar to make it simpler, an instruction
RELEASE Taskname

From the operator level, semaphores can only be accessed through their address with the instruc-
tions REQUEST semaphore address and RELEASE semaphore address; to make it simpler, an
instruction RELEASE taskname is possible which releases the semaphore for which a task is wai-
ting in the SEMA status. Note that the latter form of instruction on the one hand does not address
a certain semaphore specifically because the address of the semaphore variables concerned is not
specified, but on the other hand always concerns one and only one semaphore because a task in
the SEMA status can only wait for one semaphore.

The PEARL instructions REQUEST semaphore variable and RELEASE semaphore variable are
available, the corresponding traps are REQU and RELEA.

Supplementary to what has already been described, semaphores are multipied implemented under
RTOS-UH, i.e. depending on the pre-assignment of the semaphores, several REQUEST operati-
ons can be carried out without blocking. Then the synchronization of two tasks active as generator
and consumer is possible: if the consumer carries out a REQUEST operation before using the ge-
nerated data (which may be stored for example in a cyclic buffer) and the generator carries out a
RELEASE operation after provision of a data set, synchronization of both is guaranteed.Der Ver-
braucher stets erst dann lauffahig, wenn zu bearbeitende Daten erzeugt wurden.

18/52

3.2.2.9 Bolts

Bolts operate quite differently to semaphores. They can distinguish between read only tasks and
tasks which also modify data. Reading processes can signal the start of their access to the critical
data section with the operation

ENTER Boltvariable
and the end with the operation
LEAVE Boltvariable

das Ende ihres Zugriffs auf den kritischen Datenbereich signalisieren. Writing processes, i.e. tasks
which modify data, use the operation

RESERVE Boltvariable
for entering and

FREE Boltvariable
for leaving the critical path.

The aim of these differnt operations is not to obstruct reading processes if no writer wants to use
the data. As long as no writer has carried out a RESERVE operation, the ENTER and LEAVE ope-
rations only serve to mark use of the data. The synchronization mechanism linked with the bolts
does not come into action until a RESERVE operation is processed. If a reading process is in the
critical path at this time, execution of the RESERVE-ing writer is suspended until the reader or rea-
ders have left the critical path. At the same time, entry into the critical path is blocked for readers
and other writers. If there are no more readers in the critical path, i.e. all readers have executed
their LEAVE operations, the writer is put back in the ready to run status and is assigned the pro-
cessor. After processing the FREE operation allocated to the RESERVE, the critical path is re-
leased.

3.2.3 Event Entry

Changing from the SCHD status into the RUN status is only possible by entry of the event determi-
ned in the planning in, either by reaching a time, expiry of a period of time or arrival of an interrupt.

The operator only has limited influence on this. The time can be influenced with the CLOCKSET
command (no PEARL equivalent, no trap); an interrupt can be simulated with the command

TRIGGER Interruptkennzeichnung

The PEARL instruction for this corresponds to the operating command, the corresponding trap is
TRIGEV.

3.2.4 Uberblick tiber Taskzustandsiibergange

Hier die moglichen Zustandsiibergidnge mit veranlassenden Operationen im Uberblick:

DORM . RUN . activate
DORM _ SCHD : planin
RUN . DORM : terminate

RUN -~ SUSP : suspend
RUN -~ SCHD : plan in with suspend

19/52

RUN

SUSP
SUSP
SUSP
SCHD
SCHD
SCHD
SEMA
SEMA
SEMA
SCHD
SUSP
DORM
DORM

3.3 Interrupt Routines

The second most important element for the efficiency of RTOS-UH after concept of the tasks is the

SEMA
DORM
RUN

SCHD
DORM
RUN

SUSP
DORM
RUN

SCHD
SEMA
SEMA
SEMA
SUSP

synchronization operation REQUEST
terminate

continue

plan in

plan out

event entry

plan out

terminate

synchronization operation RELEASE
impossible

impossible

impossible

impossible

impossible

Tabelle 3-1: Task- Status changes

planned use of interrupt routines.

Interrupts are events triggered under certain circumstances by the periphery or the driver compo-
nents for peripheral equipment. They interrupt the regular process of a program and are processed
by special program segments, the interrupt routines. The figure below explains the usual program

run and processing of an interrupt:

20/52

Interrupt routine

u‘j

@ -_— Save register

User program

PCr

PC

Restore register

v

Abbildung 3-3: Program interrupt by interrupts

1. User program runs

Interrupt - save the processor state
Process the interrupt routine
Restore the processor state

ok D

User program runs

The reason for using interrupt routines is the slow functioning of peripheral devices in comparison
with the processor. With a serial interface, the transfer of one character at 9600 baud takes about 1
ms, the processor, however, could send and receive the data about 1000 times faster. Since the
transfer of a character is processed independently by the hardware, it is advisable to have the pro-
cessor perform other tasks during this time. The processor is not required again until the character
transfer has ended, either to provide a new character or to detect the end of the transfer. RTOS-
UH uses these pauses by assigning the processor capacity to runnable tasks. Only when the pro-
cessor is required to look after an 1/0O component, will it be used for this. The I/O components trig-
ger an interrupt in this case which interrupts the regularly operating programs. RTOS-UH keeps
special interrupt routines for looking after the components for such cases. This avoids processor
capacity being wasted anywhere in the operating system by repeated polling of peripheral compo-
nents.

21/52

Interrupt routines are outside the task concept of RTOS-UH because the interrupt reply is already
available in the processor as a special case. The task change mechanism of RTOS-UH is paraly-
sed for the duration of interrupt routine processing. To keep these paralysis times as low as possi-
ble, all interrupt routines of RTOS-UH operate together with system utilities which are usually
created as tasks. Here too, the RTOS-UH-own task status change mechanisms are exploited: the
system tasks suspend their execution or plan in to be continued again by the interrupt routines.
Only the system programmer has controlled access to these interrupt routines: user programs al-
ways use the system tasks for this.

3.3.1 Timer-Interrupt

The only exception here is the system clock: a periodic interrupt which is triggered every millise-
cond in most RTOS-UH systems, manages the system time independently. The appropriate inter-
rupt routine checks for every clock interrupt, also known as clock tick, whether a time is available
for which a planning in exists. If so, the necessary measures are taken to change the task status
and the task switch started to assign the processor to the highest priority task.

3.3.2 Interface Interrupt

As already mentioned above, output of characters through most serial and parallel interfaces is
slow in comparison with the processor speed. Therefore there is an interrupt routine in the RTOS-
UH for every interface which carries out input and output of characters independently of every task.
These interrupt routines only work together with their system tasks for the start and end of the input
and output process. For the duration of the actual input or output, these system tasks suspend
their processing (are in the SUSP status) and are continued by the interrupt routines at the end of
input/output.

3.3.3 Floppy-Interrupt

Longer waits also occur in the operation of mass memories. Therefore interrupt routines usually
exist which enable the processor to be assigned to runnable tasks during wait periods. The cor-
responding system task also suspends its processing for this time and is continued by the interrupt
routine if necessary.

3.4 System Tasks

Now that it has been explained what tasks are and what can be done with them, the function of the
system tasks permanently related to RTOS-UH will be explained. The practical benefits of the task
concept become clear first; many features of the operating system will become comprehensible
and recognized as self-conclusive.

The function of the RTOS-UH is based on a number of system tasks which offer a number of key
services in addition to the services in the nucleus of the operating system. All respectively available
system tasks are necessary for the function of the operating system and fulfill their task without
operator intervention. Therefore they are protected against illegal interventions in their very names:
the character # with which the name begins cannot be entered by the operator as part of a valid
taskname. For the sake of simplicity, the tasks are named below without this leading #. Not all con-
ceivable or already realized system task types are listed below. For the support tasks in particular
only the typical representatives are presented. Other system tasks with similar jobs behave simi-
larly and are also realized similarly.

22/52

3.4.1 Support Tasks and Data Stations

A support task is responsible for the management of all requests made by the system or by user
programs of a peripheral device. RTOS-UH contains a support task for every physically indepen-
dent device. These devices are referred to as data stations under RTOS-UH because they are the
destination or source for data transfers. Data stations have a name which is specified in the form
/data station according to the RTOS-UH nomenclature. The exact meaning of the support tasks is
explained in the chapter I/O system.

3.4.1.1 IDLE

A task with this name exists in every RTOS-UH system. It is the so-called idle task of the system
which is always ready to run. This task has the lowest possible priority and is always assigned the
processor when no other task is ready to run. The IDLE task serves no other purpose than its con-
stant availability. The code processed by IDLE normally consists of an endless loop. However,
systems do exist in which the IDLE stops the processor until an interrupt arrives. This saves power
in battery-operated computers.

3.4.1.2 USER

The task with the name USER is the most important one for the user. This task forms the operating
interpreter of an RTOS-UH system and is responsible for the input, evaluation and execution of
operating commands. Once activated, it exhibits its readiness to receive commands by outputting
the character * as a prompt. It then waits for entry of a command. On termination of the input it
analyses the entered text and executes the received commands. The name USER comes from the
fact that this task is the system-internal representative of the user in an RTOS-UH system.

The task USER operates with a very high priority in order to be able to receive and process ope-
rator interventions for high priority continuous tasks. This task also has all the necessary memory
space even in the DORM status. Therefore it can still be started even in a computer suffering from
an acute lack of memory space, e.g. to remedy the cause of the lack of memory space (termination
of memory "muncher" etc.).

For more extensive commands, for example, compiling of a program, it generates independent
tasks, so-called sub-tasks. These tasks are generated dynamically and process complex operating
commands with low priority independently. This makes the operating interpreter ready to receive
new commands earlier.

A good example of this is the COPY command. After giving a COPY command, a subtask is gene-
rated immediately which actually executes the copying process. Since the USER task has com-
pleted its job with the generation of the subtask, a new COPY command can be given immediately
for example. Both copying procedures then run quasi-parallel processed by two separate subtasks.
In wait periods of one COPY subtask, the other COPY subtask can operate and vice versa. In ad-
dition to the psychological effect that waiting for the computer is avoided, shorter copying time than
in the chronological processing of copying tasks can be achieved. But be careful: if you are copy-
ing from or to the mass memory, the total copying time required may be greater than the sum of
the times for single COPY commands because a lot more positioning processes are required on
the mass memory.

Subtasks derive their name from the operating command to which the system appends a consecu-
tive number (COPY/xx, the number xx is separated by an oblique stroke). At the end of the job they
automatically disappear from the system again.

23/52

If an RTOS-UH has several tasks which begin with the name USER and are distinguished by a
following digit, several jumps to the operating interpreter are available. This is normally the case in
systems with several serial interfaces. Every single USERX task is responsible for command ent-
ries from one interface. Since a USER exists for every interface, operating commands can be ente-
red independently of each other (multi-user facility). This means that several users can work on
one computer.

However, RTOS-UH is not a real multi-user operating system: the individual users are not protec-
ted from each other in any way, files have no user assignment, tasks can be mutually manipulated,
etc. The task USER1 usually has the highest priority of all USER tasks.

3.4.1.3 XCMMD

A task with the name XCCMD is also an operating interpreter in an RTOS-UH system. It gets its
commands, however, not from operator inputs but from outputs from other programs. Every task
can transmit operating commands by outputs to the data station /XC supported by the XCMMD. In
this way programs can perform operations which do not belong to the scope of the respective pro-
gramming language.

3.4.1.4 ACIA, SCC, RS232

A task with the name ACIA or SCC is responsible for looking after a serial interface. It receives
input and output jobs from other system tasks or from user tasks, manages the operating status of
the serial interface, fulfills the input/output jobs in cooperation with the appropriate interrupt routine
and returns the completed jobs to the contractor. An ACIA cannot process several input or output
jobs simultaneously.

The name ACIA or SCC comes from the name of typical components for operating serial inter-
faces.

This application range is typical for a so-called support task. In the course of an input or output job
an ACIA runs through different task statuses. Normally DORM, it is activated by the system when a
job arrives. In the RUN status it performs its management tasks and passes on the job to the ap-
propriate interrupt routine. The ACIA then goes into the SUSP status. At the end of the input or
output, it is continued by the interrupt routine. Back in the RUN status it performs further manage-
ment tasks and returns the job to the contractor. Then it terminates itself.

If several serial interfaces are available in a system, several tasks ACIAX also exist, whereby x
stands for the appropriate interface. The USER task assigned to a serial interface has the same
identification x as the corresponding ACIA. The name of the assigned data station is /Ax. The in-
terface supported by the ACIAL is referred to as the system interface because it has access to the
highest priority USER.

3.4.1.5 SOUT

As arule a SOUTXx exists for every ACIAX. A task SOUT is required for the output of data through a
serial interface in full duplex mode, i.e. if transmission and reception are to take place simultane-
ously through one serial interface, the output is made via the SOUT and the input via the ACIA. A
SOUT cannot process input requests, its name comes from the characterization serial out.

If outputs are demanded from ACIA and SOUT at the same time, both tasks control their access to
the interface with synchronization variables, semaphores. Therefore a SOUT may also be in the
SEMA status.

The name of the supported data station is /Dx, whereby X is selected as described in the ACIA.

24/52

3.4.1.6 EDFM

An RTOS-UH system which has an EDFM task contains a RAM disk. EDFM is the support task for
this file-oriented data management in the system memory. The name EDFM comes from EDit File
Manager which implies that there is an editor in RTOS-UH which can work directly on the RAM
disk. The supported data station, the RAM disk is called /ED/.

EDFM has the same tasks as an ACIA but does not work together with an interrupt routine becau-
se there are no wait phases for the readiness of a peripheral device in the memory. As soon as
EDFM has received a job, it carries it out without going into any other status than RUN.

3.4.1.7 ERROR

The ERROR is the highest priority task in an RTOS-UH system. It is responsible for processing
error messages. By operating system-internal special handling of the ERROR, it can never be
blocked such that it is no longer able to run.

The ERROR has a cyclic buffer in which error messages are stored with an error number and clear
text if necessary. Directly after entering an error message, the ERROR is activated. It provides an
error message for output through the ACIA and if necessary measures for error-tolerant continuati-
on of the operating system.

In addition, the ERROR is responsible for activating the USERSs: if the interrupt routine of an ACIA
receives a special character, the *A, "B, *C or a BREAK signal and activation of the USER is allo-
wed, it transmits a special message to the ERROR. The ERROR then activates the USER. This at
first glance somewhat complicated path was chosen because ERROR is always ready to run. The-
refore in case a USER has been suspended by force by the system because of illegal operations
or for whatever reason has gone into an endless loop, it can get it out of trouble and maintain at
least emergency operation by restarting the USER.

3.4.1.8 UHFM

UHFM is the support task for mass memory, i.e. an RTOS-UH-system which has a UHFM task,
has a driver for mass memory (floppy, harddisk). The name comes from University Hanover File
Manager. UHFM is responsible for inputs and outputs through the mass memory and management
of the file structure on the mass memory. Since floppies and harddisks also have wait phases (po-
sitioning of the write-read heads, motor start-up phases), the UHFM also operates with an interrupt
routine. The UHFM can therefore go into the statuses SUSP or SCHD.

Since RTOS-UH enables data management on the mass memory in different ways (at present
DOS-compatible or RTOS-UH-own management) the UHFM uses different management routines
depending on the required type of management. These management routines can be connected
via external jump terminals, see manual. The supported data station is called /FO, /MO,

3.4.1.9 VDATN

VDATN is the support task for a memory-internal FIFO-similar organized input/output unit. The
data stations are called /VO as destination for outputs and /VI as a source of inputs.

VDATN is used especially for the unsynchronized communication between tasks: a task outputs a
message at any time to the VDATN, another task reads this message, again at any time. If the
writing task has not made any output, the reading task is suspended by the system (status 1/0?)
until the desired input can be satisfied. The writing task can continue unhindered in any case. Se-
veral outputs of the writing task are passed on to the reading task in the order of their arrival in

25/52

VDATN (FIFO structure). VDATN can manage as many of these I/O channels distinctively with
filenames as you wish.

If, however, several tasks with different priority are output to one 1/O channel, a priority-wise order
is superposed on the FIFO principle to such an extent that the outputs of the higher priority task
push it at the start of the FIFO in the order of priority. Input requests of higher priority tasks also
push out requests of lower priority tasks.

The name VDATN comes from Virtual DATa station.

3.4.1.10 NIL

NIL is the support task for the data station /NIL which represents the ideal data source and sink.
Outputs to the station /NIL are always performed successfully; when reading from the station /NIL,
a CR is always returned.

3.4.1.11 PPROT

PPORT is the support task for a Centronics interface. Only outputs are permitted via PPORT
otherwise the ACIA executions can be taken over entirely. The name is an abbreviation of Printer
PORT, the data station name is /PP.

26/52

4 First Steps

After all this theory it is time for a little practice. With the knowledge already gained, it is possible
to observe the behaviour of the RTOS-UH, but before giving first examples to demonstrate what
we have already learned, the fundamentals of system operation and some elementary operating
commands need to be explained. However, the computer should be used here, the sooner it is
used, the more errors can be made without risk before things get serious.

4.1 System Start

The first hurdle when starting an RTOS-UH system has been taken when the system message
appears on the screen. For computers which operate with a connected terminal this may be more
difficult, computers with a built-in terminal are usually easier to handle.

4.1.1 Computer Configuration with External Terminal

The terminal must be connected to the main interface of the computer, usually identified by A or 1.
For 25-pole Sub-D connections, the pins 2, 3 and 7 (RX, TX and GND) must be connected. Pins 4
and 5 (RTS and CTS) should be bridged at both cable ends at first for the sake of simplicity.

The terminal should be TELEVIDEO-compatible, VT52 is OK as a last resort. The necessary baud
rate is specified in the manual, chapter Implementation features. If it is unknown, you can start with
9600 baud. The other transmission parameters are: 8 data bits, 1 stop bit, no parity. However 7
data bits and 2 stop bits are also possible because RTOS-UH only uses 7 data bits. XON/XOFF
should be chosen as a protocol (the hardware handshake RTS/CTS is bridged). The terminal
should not do any character conversion (CR=CR), on reception of an LF scroll automatically to the
bottom line on the screen and when the line length is exceeded, position automatically at the be-
ginning of the next line. The terminal should not carry out a local echo.

When these basic settings have been made, the computer can be started with inserted RTOS-UH
EPROMSs or bootdisks. The system message should appear about 10 s after starting the computer
at the latest or at the end of the booting process.

If nothing happens on the screen, the connections to pin 2 and 3 at one end of the terminal con-
necting cable should be switched and the process repeated. It does not hurt to press the No scroll
or Hold screen button on the terminal twice. An XON (press Control and Q-keys simultaneously
Q) has never bothered a computer either.

If only strange characters appear on the screen (providing a RTOS-UH system message does not
display a collection of strange characters) the baud rate is probably wrong - try 19200 baud.

If none of this helps, this brief introduction is no use. It is then best to leave the computer alone just
before finishing time or on Friday afternoon - perhaps it will have another think about things.
Otherwise consult a colleague and/or friend with experience in commissioning serial interfaces.
The excuse of defective EPROMSs or bootdisk is practical but usually not applicable because every
RTOS-UH system delivered has already been run.

If the system message appears, the data output works at least. If after simultaneously pressing the
keys Control and A a * appears on the screen, the opposite direction also works, if the asterisk
does not appear, the cable is probably at fault. Either connections or jumpers are missing or the
line is faulty.

27/52

4.1.2 Computer Configuration with Integrated Terminal

Computers with an integrated terminal usually only need to be started with inserted EPROMs or
bootdisks. To draw level with their colleagues with external terminals the Control and A keys
should be pressed simultaneously here too.

4.2 Making Contact

By pressing the keys Control and A at the same time the first contact is made with the computer.
The computer has acknowledged the keypress by outputting a * as a prompt and is now waiting for
a command to be entered.

Before direct work with the computer can begin, a few conventions: simultaneous pressing of the
Control key together with another key, e.g. A, is specified below as "A. Further, sending a com-
mand means entering 'A, the command text and then a CR, either with the RETURN or ENTER
key or as "M.

The access to the operating interpreter in the RTOS-UH is basically different to other operating
systems: before entering a command, “A must be entered.

The reason for this is the blocking of the terminal output for appropriate input. If the operating in-
terpreter is always waiting for inputs, outputs of tasks could not appear on the screen, unless they
were output through the duplex channel (system task SOUT). This on the other hand would mean
that the input text would be illegible due to the strewn in outputs. To avoid this effect, inputs and
outputs are normally only made via the system task ACIA so that no outputs appear on the screen
during input processing.

4.2.1 The System Message

The system start message is still visible on the screen. This gives you important information on the
current configuration of the operating system. A typical system message looks like this:

>>> RTOS - UH <<

Version 2.2 Aug./1989 - Lizenznummer: IEP---TEST---EPAC 68000

Nuc=6.5-E Imp=2_N Pbus=1.1 Error=0.6 EdFm=0.5
Vi/Vo=0.5 sh/ext=1.0 Sh/sr=3.2-H Shell1=3.2-G Hyp=12.3-D
Dev = 3.2 Math=1.B assign=0.7 r/w=1.2 Loader=4_.5-F
Help=1.6¢c Prom=2.8 RTC/XPAC=3.1 PWFail=1.2 ADDint=1.0

P=Mini-12.3-E

RESET.

28/52

The individual system parts are specified here with their own version numbers in addition to hea-
der, version and licence number. The system shown here, a version for a 68000 single-board
computer, which is used below as a sample computer, contains the following parts:

Nuc . operating system nucleus, in version 6.5E

Imp . implementation disk with ACIA and clock interrupt in version 2.N
Pbus : driver routines for the bus system of the computer, in version 1.1
Error . system task ERROR, in version 0.6

EdFm . system task EDFM, in version 0.5

Vi/Vo . system task VDATN, in version 0.5

sh/ext . operation interpreter extensions, in version 1.0

Sh/sr : subroutine package for the operation interpreter, in version 3.2-H
Shell . operation interpreter with USER, in version 3.2-G

Hyp :runtime package for high level language programs, in version 12.3-D
Dev . various help routines, in version 3.2

Math . floating point arithmetic, in version 1.B

assign . output deflection, in version 0.7

r/w : binary input/output, in version 1.2

Loader : linker and loader, in version 4.5-F

Help : operating command HELP, in version 1.6c

Prom . utility for creating ROM-resident programs, in version 2.8
RTC/XPAC, : computer-specific

Pwfail,

ADDiInt

P . PEARL-Compiler, in version mini-12.3-E

Tabelle 4-1: Parts of the operating system

Then the RESET message follows, which indicates that RTOS-UH has just performed a cold start.
At this point the ABORT message may also appear. In this case RTOS-UH has performed a warm
start, i.e. all task activities have been ended properly, a test for correct structure of the memory
management carried out and all system components reset. An ABORT is a milder form of system
initialization in which loaded tasks and files in the RAM disk are not lost. The triggering of an
ABORT may, however lead to a RESET, complete system initialization with loss of all data in the
RAM on recognizing errors in the memory manager.

In most computers, RESET and ABORT can be triggered by the hardware with special keys.

4.2.2 The Memory Structure

RTOS-UH is designed as an operating system in which the user can get as much information as
possible on the current system status. The memory assignment of the sample computer after being
switched on should be considered as the first example: with the command S ("A S CR) the follo-
wing memory assignment list is obtained:

29/52

*S

00002086->00002090
00002090->000020F2
000020F2->00002154
00002154->000021B6
000021B6->00002218
00002218->0000227A
0000227A->000022DC
000022DC->0000233E
0000233E->000023A0
000023A0->00002402
00002402->00002464
00002464->000024C6
000024C6->00002528
00002528->0000258A
0000258A->0001FFF4
0001FFF4->00000000

MARK
ATSK
TASK
TASK
TASK
TASK
TASK
ATSK
TASK
TASK
TASK
TASK
TASK
TASK
FREE
MARK

Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident
Resident

#I1DLE
#ACIA1
#ACIA2
#SOUT1
#SOUT2
#PPORT
#ERROR
#EDFMN
#VDATN
#XCMMD
#USER1
#USER2
#NIL

Die Angaben in den einzelnen Spalten haben folgende Bedeutung:

Start

address of the memory segment

End

of the memory segment

Type

of the memory segment

add. info

(optional)

Name of the owner

Tabelle 4-2: Memory assignment

In table 3.3 all possible types of memory segments are listed.

Mnemo Bedeutung
MARK specially marked segment, start or end of the system memory
TASK task identification; the task code can but need not be in this segment. Owner of the
segment is the task itself.
ATSK is not a typing error but the task identification of an autostart-capable task..
TWSP task workspace. The memory range for local variable of a task. The owner
is this task.
PWSP procedure workspace. Extra memory space required by the task for procedure-local

variable. The owner here is also the task.

30/52

CWSP

MDLE

EDTF
FREE
PMDL

SMDL

?2?7?7?

communication workspace. Memory space requested by a task to perform inputs or
outputs. The owner is the task. If the task is to be terminated, the memory section is
under the ownership of RTOS-UH (name specification (RTOS)) until the end of the
I/O operation.

module. Data section for permanent data, e.g. for common use by several tasks. A
module has its own name and is itself owner of the memory segment.

A special module with the name #NORAM signals a gap in the memory expansion of
the computer. The area concerned cannot be accessed.

Edit file. This is a segment of the RAM disk. The filename is specified as owner.
This is free memory space.

Prom module. A memory segment formed in the creation of PROM-resident pro-
grams.

Shell module. The module contains an operating command coded in high level lan-
guage. Generation by PEARL is possible.

A memory segment is no longer identifiable. The type identification noted in the me-
mory segment was destroyed by illegal operations, program errors or similar.

Tabelle 4-3: Type specifications for memory segments

In the example only memory start, system tasks (partly autostart-capable but all with the Resident
property), free memory space and end of memory are available. During further processing other
segments will appear. The section before the start of the memory is occupied by RTOS-UH internal
management informations and the TWSP of the resident system tasks and is no longer available.

The command S allows a limiting of the output to certain types of segments, see the manual.

4.2.3 Die Taskzustande

An overview of the statuses of all tasks in the system can be obtained by the command L (List
Tasks). This looks like this in the sample computer:

*L

00002090
000020F2
00002154
000021B6
00002218
0000227A
000022DC
0000233E
000023A0
00002402
00002464
000024C6

+FFF/1
-005/71
-005/1
-005/71
-005/1
-001/1
-00A/1
-001/1
-002/1
-002/71
-007/1
-006/2

RUN

RUN

DORM
DORM
DORM
DORM
SCHD
DORM
DORM
DORM
RUN

DORM

TWS=00001092
TWS=000010EE
TWS=000011D6
TWS=000012BE
TWS=000013A6
TWS=0000148E
TWS=0000162A
TWS=0000169C
TWS=0000171E
TWS=000017A0
TWS=00001962
TWS=00001C3E

PC=000C14D4
PC=000C2342
PC=00000000
PC=00000000
PC=00000000
PC=00000000
PC=000C2CCC
PC=00000000
PC=00000000
PC=00000000
PC=000C447E
PC=00000000

#I1DLE

#ACIAL
#ACIA2
#SOUT1
#SOUT2
#PPORT
#ERROR
#EDFMN
#VDATN
#XCMMD
#USER1
#USER2

31/52

00002528 -002/1 DORM TWS=00001F1A PC=00000000 #NIL

Die Angaben in den einzelnen Spalten bedeuten:

TID addr. of the task header

Prio Prioritat (hex)

User USER which performed
the activation

Zustand Status

TWSP-Adr. address of the TWSP

PC addr. of the command
just executed

Taskname

Tabelle 4-4: Output of the task list

The priority is output hexadecimally with restricted numeric range.

The specification of the addresses of the task workspace and the program counter of the tasks
enable insiders to make further investigations of the current activity of a task. In particular, it can be
observed under some circumstances that a task is ready to run but has not yet been assigned a
TWSP and a PC. Such a task is still waiting for assignment of TWSP.

The list obtained here is explained by the interaction of the system task as follows: IDLE is ready to
run (as it should be), ACIAL also because it is just dealing with the task list output. USERL1 is ready
to run because it must create the task list for output by the ACIAL. All other system tasks have no
jobs at present and are therefore DORM. Only the ERROR is planned in for treating error messa-
ges.

The order of priority of the system task is also easy to follow: the ERROR has the highest priority (-
10), followed by USER1, which is marked as USER at the system interface and has a higher prio-
rity than USER2. The ACIAs and SOUTSs are in the next priority stage because they are more im-
portant for input and output of the USERs in the system than the support tasks for the other data
stations.

The task statuses can be observed with the following commands:

L - output list of all tasks
LU - output user tasks only (list user tasks)
SHOW - for specific observation of a single task (SHOW taskname)

Tabelle 4-5: Commands for output of task statuses

The L command can can only be given by options for output according to certain criteria of selec-
ted tasks.

32/52

4.3 Some Examples

Some examples for the behaviour of tasks under RTOS-UH are given here. Since the creation of
programs, especially operation of the editor and treatment of files, is not yet possible with the pre-
vious explanations, this chapter is restricted to interventions by operating commands. The aim is to
explain the system operation including some basic commands as well as the practical observation
of the theoretical knowledge of the task behaviour.

4.3.1 Input of Commands

RTOS-UH requires the operating interpreter to be started with ~A before entering a command. The
activated operating interpreter logs in with a * as a prompt and accepts the input of commands.

During command input, the following editing possibilities exist:

e Cursor left, backspace ("H) or DEL (Delete) delete one character to the left

» Cursor right ("L) restores the character at the current position from the previous input
e CR, RETURN or ENTER (*M) and LF ("J) end the input

It is possible to enter commands in small or capital letters and mixed, no differentiation is made
between small and capital. Task, module and filenames must be written with the correct small and
capital letters, however.

Parameters are separated from the commands by blanks or commas.
The command line may be a maximum 128 characters long.

A command ends with a semicolon ; or a double hyphen --; this end identification can be omitted if
only one command is given in a line. Commands separated by semi-colons are processed by the
system at the same time if possible (e.g. two files can be copied simultaneously in this way), com-
mands separated by -- are processed chronologically (command chaining). The following com-
mands will not be processed if the respective preceding command was erroneous. In the command
P--LOAD (translate PEARL with susequent loading of the program) the load command is only exe-
cuted if the translation has taken place without any errors.

The following characters are available for checking the output:
» XOFF ("S) stops the output, i.e. the ouput of the prompt is also suppressed after pressing "A.
 XON ("Q) continues it.

Since XOFF can easily be pressed accidentally instead of A, an XON is always useful in unclear
situations. Access to the operating interpreter may then be free again.

XOFF and XON are never taken over into the input string.

4.3.2 Generation of Tasks

Tasks are normally generated by high level language or assembler programming or generated
automatically by the interpreter to process complex tasks. With the DEFINE command, the opera-
ting intepreter can also be forced to direct task generation, however. The

DEFINE.X -- SHOW X
command has the following effect:

33/52

The operating interpreter generates a task with the name X, whose job is to execute the subse-
guent (--, command chaining) SHOW command. This construction enables the definition of fixed,
own operating command sequences.

Internally, this task is generated in the same way as, for example, the subtask generation in the
COPY command. The generated subtask is given a prescribed subtask nhame by the suffix . Name
after the operating command. Blanks may appear before the point. If no name is prescribed, the
system generates the name from the operating command, followed by a / and a two-digit, conse-
cutive assigned number.

After entering the command DEFINE.X -- SHOW X the system replies with the output belonging to
the SHOW command. With L and LU it can be determined that the task X is now available as a
user task in the system.

4.3.3 Chronological Planning Ins

With this task X, some examples of activations and planning ins can then be performed. With the
command

X
(short for ACTIVATE X), X is activated and the output appears again. With the command
ALL 5 SEC X

(short for ALL 5 SEC ACTIVATE X), X is planned in cyclically. X is activated immediately and then
in a 5 second rhythm, recognizable from the output which appears. Between the outputs, it can be
determined with the LU command that X is planned in in the SCHD status.

Nevertheless X can also be started asynchronously by hand: The input of X as a command only
leads to an additional activation and output, but does not change anything in the rhythm of the re-
gular outputs. This poltergeist can only be kept away by

PREVENT X,

a planning out of task X.

A difficult planning in can be observed with the command
AFTER 10 SEC ALL 2 SEC during 10 sec X

if nothing happens for 10 seconds, 6 output lines appear and then nothing happens again. With
LU, X is found in the DORM status, it has fulfilled its task, has been planned out automatically and
is now sleeping peacefully.

If you try to wake up X with the x command, you will soon see the reaction to input errors: the sy-
stem does not find any task with the name x and complains with

>> #USER1:x WRONG COMMAND.

Error messages start with >>, followed by the task name of the causer and specify the cause of the
error, here, the input of x as an unknown command.

If X is planned in faster (ALL 1.0 SEC X) and the output with XOFF is stopped, the ability of RTOS-
UH to buffer task activations can be observed. If XON is given within 5 seconds after XOFF, output
lines appear immediately. Their number corresponds to the number of seconds for which the out-
put was blocked. Since X could not end its output, the corresponding number of activations has
taken place, but could not be executed because the first activation was not ended (no change from
RUN to SCHD). These activations were buffered and are repreated on release of the output. This
is easily recognizable particularly in a task which outputs the current time:

34/52

DEFINE.Y—CLOCK,
because the time of the actual task run is output here.

If the output is blocked for longer, a line with the output of the first activation appears on releasing
the output, followed by an error message (or several)

>> X:INTRPT OVERFLOW (ACT).

and then the outputs of the other, buffered activations. The error message indicates that the acti-
vation buffer of task X has overflowed, caused by an interrupt routine (here the clock tick).

4.3.4 Interrupt Planning Ins

RTOS-UH knows 32 different interrupt sources which are named by the designation EV XXXXXXXX
(EV = event). xxxxxxxx is a hexadecimally noted bit mask in which the interrupt concerned is noted
with a 1, all others with a 0. Interrupt EV 00080000 serves as an example here.

The task can be changed from the DORM status to the SCHD status with
WHEN EV 00080000 activate X

With the simulated triggering of the interrupt by
TRIGGER EV 00080000

nothing at all happens. RTOS-UH blocks the appearance of an interrupt at initialisation. X cannot
be started with the TRIGGER EV 00080000 command until after the interrupt has been released
with

ENABLE EV 00080000

X is reactivated every time the interrupt appears. The planning in can be deleted again by
PREVENT X. However, the activation is already prevented by the interrupt disable

DISABLE EV 00080000

4.3.5 Suspend and Continue

These operations can be observed well in an endless loop of the type
DEFINE.endlos—endlos

with the commands SUSPEND (SU for short) and CONTINUE. By the way the sense of the high
priorities for ACIA and USER also becomes clear: although the task endless runs at priority -1 in
an endless loop, operating commands can still be given. The computer behaves for the higher prio-
rity tasks as if the lower priority stages do not exist.

After a
T endlos

(terminate the endless task), this can be shown better with the aid of the task Low from
Define.Niedrig PRIO 10 -- Show Niedrig; All 2 sec Niedrig

(the task Low is assigned priority 10) and the task endless. If endless is activated whilst Low is
running, the outputs of Low disappear first because it no longer has any processor capacity. Low,
however, is still activated regularly and therefore error messages appear after approx. 10 sec.
which point to overflow of the activation buffer of Low. The effect here is identical with stopping the
output in the chapter Chronological planning ins.

35/52

5 The I/O System

The 1/0 system of RTOS-UH differs considerably from that of other operating systems in concept.
As an explanation, the basic thought behind the design of the I/O system is demonstrated here.
This is followed by a detailed explanation of the functional principle. Although this goes into great
detail in part, it is very important to study this description to understand the possibilities which
RTOS-UH offers. A brief description of the most important devices and data stations which exist in
an RTOS-UH systems concludes this chapter.

5.1 Queues

RTOS-UH decouples the execution of I/O operations from the initiating task. A task which wants to
perform an input or output operation first requests space for I/O operations from the operating sy-
stem, the so-called Communication Workspace (CWSP). Such a memory segment is also known
as Communication Element, CE. In this CE, the task enters on which device or which file which 1/O
operation is to be performed and passes on the filled in CE to the operating system.

The operating system hands this CE into the queue of the device concerned. Ordering takes place
in the order of priorities of the initiating tasks, in the event of equal priority in the order of arrival. At
the same time it activates the support task belonging to this device if this is not yet active.

The support task then takes a CE from the queue and processes it. After processing, it is returned
to the operating system, otherwise the used memory section is automatically declared as free
memory space. The support task then terminates if no other CE exists in its wait queue.

If a task which has been initiated by incomplete inputs or outputs is terminated, its input CEs which
are still in queues are taken immediately from the queue and declared as free memory space. CEs
already being processed by a support task and output CEs are left in the system and completed.

Execution of the I/O operation is thus decoupled from the processing of the initiating task. A task
can initiate an output by providing the output data in a CE and passing this CE on to the operating
system. If the task has no further interest in the result of the output (errors could occur for exam-
ple), it can continue immediately after the transfer. The times in which a support task suspends its
execution can thus be used by the initiating task.

Similiar behaviour can be observed for inputs: a task can generate an input request, then continue
processing and only later show an interest in the read-in data. If the data are not available at this
time, however, the task is put in the I/O status and its execution suspended until the end of the I/O
operation.

The COPY command uses this facility by peforming ping-pong operation with two CEs: One CE
requests input from the copying source, another CE is used for output to the copying destination.
Both the input and the output requests can then be processed simultaneously by the system. The
generated subtask COPY/xx merely switches the data direction of the CEs after an input and out-
put so that the input received is passed on as an output and the old output CE is then used for in-
put.

5.2 LDNs, Drives and Device Names

RTOS-UH manages its own queue for every 1/O device. Operating system internally, every queue
is identified by a number, the LDN (Logical Device Number). If a device has several subdivision
possibilities (e.g. the device mass memory can manage different drives) another drive number can

36/52

or must be added as an exact specification. RTOS-UH manages the individual drives but not in
their own gqueues. Division according to drives must take place in the support task.

To simplify system operation, the operating system provides symbolic device names for many LDN
drive combinations. In the input of operating commands, a certain LDN drive combination can be
identified simply by specifying the device name. The LDN drive combinations available in an
RTOS-UH system can be displayed with the HELP-D command. The following output then appears
for the sample computer:

*HELP -D

RTOS Devices (LDN/Drive)

Al:...... 00700 A2:...... 02700 UL:...... 02703 Bl:...... 00/02 B2:...... 02/02
Ci:...... 00706 C2:...... 02706 D1:...... 0B/00 D2:...... 0C/00 PP:...... 0A/00
ED:...... 01/00 EDB:..... 01/01 VO:...... 07/00 VI:...... 08/00 NO:...... 7F/00
TY:. ..., 7E/00 TYB:..... 7E/02 TYC:..... 7E/06 XC:...... 09/00 NIL:..... OF/00

The system contains:

LDN Drive Geratename Funktion Betreuungstask
0 0 /Al/ System interface #ACIAL
0 2 /B1/ dito, buffered "

0 6 /C1/ dito, buffered and polled "

1 0 /ED/ Ramdisk, ASCII data #EDFM
1 1 /EDB/ Ramdisk, binary data "

2 0 /A2/ 2nd serial interface #ACIA2
2 2 /B2/ dito, buffered "

2 3 /UL/ dito, buffered without LF "

2 6 /C2/ dito, buffered and polled "

7 0 /NVOo/ virt. data station, output #VDATN
8 0 N/ virt. data station, input "

9 0 /XC/ operating interpreter #XCMMD
10 0 /PP/ Centronics interface #PPROT
11 0 /D1/ system interface, duplex #SOUT1
12 0 /D2/ 2nd serial interface, duplex #SOUT2
15 0 /NIL/ ideal data sink/source #NIL

Tabelle 5-1: Assignment LDN/Drive and mnemos of the data stations

The other devices specified /TY, /TYB, /TYC and /NO have special functions. It is not possible to
use them directly, their meaning will be explained later.

37/52

In the input of operating commands, devices can be specified both by the mnemonic (e.g. /A1) or
specification of LDN and Drive (e.g. /LD/0.0 for /A1 or /LD/0.2 for /B1).

5.3 Structure and Use of CEs

In this chapter, the direct handling of CEs is shown to explain the possibilities and capabilities of
this I/O concept. Although the examples here are of more interest to assembler programmers (high
level language programmers are relieved of this work by a runtime system adapted to the high le-
vel language), but should still be read because the behaviour of the runtime support for high level
language programs only then becomes comprehensible.

5.3.1 Request a CE

A CE is requested by the operating system with the trap FETCE. The size of the desired data buf-
fer must be entered in the processor register D1 for this. The trap fetches a memory segment of
the CWSP type in the required size from the operating system and parametrizes the CE. After re-
turning from the trap, the processor register Al indicates this memory segment.

The memory segment has the following structure (offset in byte relative to the processor register
Al, name according to the RTOS-UH conventions):

Offset Name Funktion

0 (0x00) FORL Forward pointer of the memory manager, points to the next memory seg-
ment

4 (0x04) BACKL Backwards pointer of the memory manager, points to the previous memory
segment

8 (0x08) OWNER number of the initiating USER

9 (0x09) TYPE type identification of the memory segment

10 (Ox0A) FORT forward pointer for chaining of the task affiliation
14 (OxOE) BACKT backward pointer for chaining the task affiliation
18 (0x12) TIDO TID of the initiating task

22 (0x16) FORS forward pointer for queue chaining. Is at 1 if the CE is being processed by
a support task.

26 (Ox1A) BACKS backwards pointer for queue chaining

30 (Ox1E) PRIO priority of the CEs (for queue)

32 (0x20) BUADR pointer ot the data section of the CE

36 (0x24) RECLEN for output: number of bytes to be output
at input: length of the available data buffer

38 (0x26) STATIO status information through the CE

39 (0x27) LDN number of the wait queue for which the CE is determined
40 (0Ox28) MODE coding of the type of 1/0 job
42 (0x2A) DRV duration of a timeout for processing this CE (only makes sense for suitable

support task)

38/52

43 (0x2B) DRIVE number of the drive for which the CE is determined
44 (0x2C) FNAME filename for which the CE is determined (is not evaluated by all support

tasks)

IOBUF data buffer. The number of available bytes is determined by calling
FETCE. BUADR points to the data section.

Tabelle 5-2: Meaning of the individual fields of a CE

The user can influence the elements after PRIO. The elements up to and including BACKS serve
for system-internal management and may not be used.

A CE procured with FETCE was parametrized by the system as follows:

* PRI10 was occupied with the priority of the requesting task
* BUADR points to 10BUF

» STATIO contains 0

* FNAME contains 8 blanks

5.3.2 Filling in a CE

Before a CE can be used, all the data important for input and output must be entered. The mea-
ning of the individual elements and the possible entries are explained below.

Name

Bedeutung des Feldinhalts

PRIO

BUADR

RECLEN

STATIO

LDN
MODE

DRV

DRIVE

CEs are entered in a queue in the order of PRIO of the CEs. The priority of the initiating
task is used here as a standard (default). This specification can be converted however.

BUADR points to the data section of the CE, after request by FETCE, this is to IOBUF,
the section after FNAME. Here as many bytes as requested are available. However,
BUADR can also be converted. If output data are already available for example,
BUADR can be set so that it points to these data. In this case the request of a CE with
data field length 0 may be useful.

Indicates the number of data bytes. For outputs, RECLEN must be set to the maximum
number of bytes to be output, for inputs to the maximum number of bytes to be read in.
The actual number of read or written bytes is additionally influenced by MODE.

In the status byte of the CE only the bits (mask $02) and 3 (mask $08) are available. Bit
1 is the so-called scrapping bit (STABRE), if this bit is set, the CE is immediately decla-
red as free memory space at the end of the input or output and not returned to the in-
itiating task (may be useful for output). Bit 3 has no definite function and can be used
freely.

The queue number of the destination device must be entered here.

Gibt spezifische Anweisungen fir die Ausfihrung des I/O-Auftrags an. Die wesentlichen
Punkte werden in der folgenden Tabelle erlautert.

DRV contains the duration of the timeout for the input or output operation in multiples of
a support task-specific basic time. At the end of the timeout, the 1/O process is aborted
with an error message. This specification is only evaluated by some support tasks. For
support tasks which do not know any timeout, DRV should be set to 0.

Must contain the possible drive division of a device.

39/52

FNAME In devices which operate file-oriented, the path of the file must be specified. The path
specification must end with $FF. Under FNAME there is ample space for every path
specification permissible under RTOS-UH (at present a max. 24 characters). The device
name may not be specified because it is already coded in LDN and DRIVE. Support
tasks which do not manage any files ignore any file specification.

Tabelle 5-3: Konfiguration eines CE's

Die genaue Art des I/O-Auftrags sowie gezielte Anweisung zru Durchfiihrung des Auftrags sind im
MODE-Feld kodiert. MODE gliedert sich in 2 wesentliche Gruppten:

» Die hdchstwertigen 11 Bit sind als Einzelbits kodiert und steuern Details der Auftragsbearbei-
tung.

* The lowest 5 bits of MODE specify the type of I/O job in the form of a job number..

The most frequently required jobs are:
Krzel Auftrag
0 READ/WRITE OLD read or write an already existing file

If an attempt is made to write in an already existing file, this is rejected
as faulty.

If the file is not yet open, opening takes place with positioning to the file
start. There is no further positioning.

If the file end is overrun when reading, it is closed automatically depen-
ding onthe bit MODMSC of MODE (see below).

If writing continues at the file end, the file is extended.

If the device concerned does not know any file manager, the file
specification is ignored.

6 CLOSE Close a file. Any specified data under BUADR are ignored. The file is
closed.

Should only be performed as an input CE.
7 READ/WRITE ANY Read or write afile

If the file concerned does not yet exist, it is re-created and positioned to
the start of the file.

The other remarks from job no. 0 READ/WRITE OLD apply here accor-
dingly.
8 REWIND OLD Position an already existing file to the file start.

If the file does not yet exist, an error message is generated. Should only
be used as aninput CE.

9 APPEND Outputs are appended to an existing file

It is positioned at the file start before this write job. The file is extended
by this write job.

Only possible as a write job.

40/52

21 REWIND ANY

22 REWIND NEW

Positioning to the file start

If the file does not yet exist, it is created first.

Should only be performed as a read job.

Generate a new file

If the file already exists, an error message is output.

Should only be performed as a read job..

Tabelle 5-4: The most important jobs in the CE

The other job numbers are explained in the corresponding support tasks. If a support task receives
job numbers which it does not know, it generates an error message.

The other bits in MODE have an individual meaning (starting with the highest significant bit, name
according to RTOS-UH convention):Die Einzelbit-Parameter sind in MODE wie folgt abgelegt (Bit-
nummer in Motorola-Notation):

15

14 13 12

11 10 9 8 7 6 5

MODMWA

MODMOU | MODMCR | MODMLF | MODMEO | MODMSC | MODMNE | MODBIN | IOCEF |NERR |EXCLU

Tabelle 5-5: Bitzuordnung der MODE-Bits

Sie haben die Bedeutung:

Bez.

Name

Function

MODMWA

MODMOU

MODMCR

MODMLF

MODMEO

MODMSC

MODMNE

Wait-Bit

Output-Bit

End on CR

End on LF

End on EOT

Suppress-command

No echo

If this bit is set, the initiating task is set to the 1/O? status by the
end of processing of the I/O job and not taken into account in the
processor assignment. Not useful with set bit 1 of STATIO.

If this bit is set, the CE is considered as an output CE, if the bit is
not set, an input is made.

If this bit is set, an output or input is ended before reaching
RECLEN, if a CR (*M) has been output or read in. The CR is
also transferred. If the bit is not set there is no special handling
for CR.

If this bit is set, an output or input is ended before reaching
RECLEN if an LF ("\J) has been output or read in. The LF is
transferred. If the bit is not set there is no special handling for LF.

If this bit is set an output or input is ended before reaching
RECLEN if an EOT ("D) has been output or read in. The EOT is
also transferred. If the bit is not set there is no special handling
for EOT. EOT serves as an end of file identification under RTOS-
UH.

If this bit is set, the file managers of RTOS-UH do not automati-
cally close a file when reading past the end of the file and the
serial interfaces allow no access to the operating interface
through ~A, B or ~C.

Only for serial interfaces: for set bit no automatic echo of the

41/52

input characters is generated.

MODBIN Binary -Bit Only for serial interfaces: for set bit binary data transfer is per-
formed, i.e. the top data bit is not obligatorily set to 0 and the
XON/XOFF protocol is switched off (only hardware handshake
possible via RTS/CTS).

10CEF Not for CE parameterization but for restoration of the CE after an
input. The end of the file has been reached in a read process.

NERR No-error-messages For set bit support tasks generate no error messages on the
screen but enter an error number in RECLEN.

EXCLU Exclusive-Bit If this bit is set the write or read access should be exclusive, i.e.
excluding other tasks. As soon as a task has exclusively used a
file, read or write accesses of other tasks are no longer permitted
until the task has closed the file.

Tabelle 5-6: The MODE bits of the CE

5.3.3 Execution of the Input or Output

After parameterization, the CE can be given to the operating system with the aid of the trap XIO.
The address of the CE must be entered before the trap call in the processor register A1 (output
register of FETCE). RTOS-UH then takes all further necessary steps. Modifications on the CE may
no longer be made! Depending on the wait bit (MODE, mask $800) the initiating task is then
suspended in its execution (status I/O? for set wait bit) or can run on unhindered (wait bit 0).

If the STABRE bit (bit 1 of STATIO) is set, no further operations are permissible with the CE from
now on. The CE is automatically destroyed by the operating system after input or output, i.e. the
CWSP is declared to free space.

5.3.4 Evaluation and Enable of a CE

If the wait bit of a CE is not set, the initiating task can wait for the end of the processing of a CE
with the trap IOWA. The address of the CE must be entered in the processor register A1 before the
trap call (output register of FETCE). The initiating task is put in the 1/0? status if the processing of
the CE is not yet ended.. After processing a CE by a support task, the following information can be
derived from the CE:

* Input CE
BUADR points to the read-in characters.
RECLEN characters have been read in.

If the end of the file was reached when reading in (can be reached exactly with End-on EOT)
IOCEF is set in MODE..

* Input and output CE

If RECLEN is 0 or negative, the I/O operation has not been performed successfully. In the
event of an error, RECLEN contains an error number with set NERR in MODE (see the manual
page C-1V-6 ff) with set highest significant bit, with NERR not set, an error message has alrea-
dy been output by the support task and RECLEN contains O.

42/52

The CE can now be re-used or returned to the system with the trap RELCE. After transmitting
the trap RELCE (A1 must point to the CE!), the memory section of the CE is declared as free
space again and may not be used further.

5.4 Example

The parameterization and behaviour of the CEs can be observed easily on the sample computer..
With the command

*CP /A2/>/ED/MIST

a copy subtask (CP: short form of COPY) is generated which is copied from the second serial in-
terface into the file MIST of the Ramdisk. Since no data source is connected to the interface, there
is no data transfer and the generated CEs can be saved in the memory with the command

*S-C
0001FCF4->0001FDBA CWSP CP/00 /ED/MIST
0001FDBA->0001FE9QE CWSP CP/00 /A2/-

im Speicher dingfest machen. S-C is the command S with the option -C which allows only CWSP
to be displayed.

The two CEs can be observed more closely with the DM command (Dump Memory). The first CE
is given at

*DM 1FCF4 1FDBA

0001FCF4: 0001 FDBA 0000 358A 0004 0001 FDBA 0001 LS T
0001FDO4: FE9E 0001 FF44 0000 0000 0000 0C20 0014 D . --
0001FD14: 0001 FD38 0002 0001 8015 0000 4D49 5354 ...8........ MIST
0001FD24: FFOD ODOD ODOD ODOD ODOD ODOD ODOD ODODcccececaanann-
0001FD34: 0ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODODcccecenann.
0001FD44: 0DOD ODOD ODOD ODOD ODOD ODOD ODOD ODODcccccenann.
0001FD54: ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODOD . ..ccceeccaanann-
0001FD64: 0ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODODcccecenann.
0001FD74: 0ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODODccccceeann.
0001FD84: ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODOD ...ccceececaannn-
0001FD94: ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODOD ...ccceeecaanann-
0001FDA4: 0ODOD ODOD ODOD ODOD ODOD ODOD ODOD ODODccccceeann.
0001FDB4: ODOD ODOD 0001 0001 FEOSE 0001 FCF4 0004cccoeanan.-

The output of the DM command consists in one line of the start address of the memory extract and
the contents of the memory section of the start address up to and including start address+15 once
in hexadecimal and once in ASCII notation.

The second CE gives
*DM 1FDBA 1FESE
OOO1FDBA: 0001 FESE 0001 FCF4 0004 0001 FEOE 0001---..--
OO001FDCA: FCF4 0001 FF44 0000 0001 0000 OC2A 0014 Do....-. *_.

43/52

OOO1FDDA:
OOO1FDEA:
O0O0O1FDFA:
OOO1FEOA:
OOO1FE1A:
0001FE2A:
00O1FE3A:
OOO1FE4A:
OO0O1FES5A:
OOO1FE6A:
OOO1FE7A:
OOO1FES8A:
OOO1FE9A:

0001
FFOO
8200
5354
ODOA
1B44
1B44
OAOA
FFOO
FFOO
FFOO
FFFF
FFFF

FDFE
0000
0OA3D
414C
1B44
1B44
1B44
OAOA
0000
0000
0000
OOFF
0001

0002
0000
OA3D
4C45
1B44
1B44
1B44
OAOD
FBOO
AEOO
DFOO
AOFF
0001

0002
0C16
494C
4420
1B44
1B44
1B44
0000
0000
0000
OOFF
0OFF
FF44

C007
000F
4520
4259
1B44
1B44
1B44
FFOO
FFOO
FFOO
FFFF
FFFF
0001

0000
000D
5741
2045
1B44
1B44
OAOA
0000
0000
0000
OOFF
OOFF
FDBA

2DFF
3BCE
5320
442E
1B44
1B44
OAOA
FFOO
FFOO
FFOO
FFFF
FFFF
0002

..-=.=ILE WAS IN
STALLED BY ED...
...D.D.D.D.D.D.D
.D.D.D.D.D.D.D.D

A transfer of the values to the structure of a CE gives the following contents:

CE-Element

CEl

Bedeutung

CE2

Bedeutung

FORL
BACKL

OWNER

TYPE
FORT
BACKT
TIDO
FORS

BACKS
PRIO
BUADR
RECLEN

STATIO
LDN
MODE

1FDBA
358A

00

04
1FDBA
1FEQE

1FF44

C20
14
1FD38

8015

The memory chain
can

be checked with S

is always 1 less than the speci-
fication x in #USERX

corresponds to CWSP
used RTOS-UH-internally

recognizable as TID with LU
not being processed

system-internally
corresponds to task priority
points to respective IOBUF

insignificant at present because
CE not being used at the mo-
ment

/ED/

REWIND ANY, input with WAIT
(from previous use when crea-
ting the MIST file)

1FEQE
1FCF4

00

04
1FESE
1FCF4
1FF44

1

C2A
14
1FDFE

Co07

being processed by support
task

input not

IA2]

READ/WRITE ANY, input with
WAIT and End on CR

44/52

DRV 0| no timeout

DRIVE 0| Drive O
FNAME MIST | specified as for command - | standard if not spec.

10BUF - empty | ((not yet used) LF uand. =

Tabelle 5-7 : Contents of the example CE

The unused parts of the CE, especially the rest of FNAME and the complete IOBUF, may exhibit
any values from the previous memory use.

With the now known contents of a CE, an own study of the status of /O operations can be made in
unclear situations.

5.5 Devices and Data Stations

Only short notes on the most important devices in an RTOS-UH system are given here. Detailed
descriptions follow in a later chapter, only the serial interfaces are described in detail here.

5.5.1 Device Parameters

Every device available in an RTOS-UH system provides a short parameter block for describing its
capabilities. This can be observed with the command

DD device names
DD means Dump Device.

The command DD outputs the address of the parameter block as well as 16 bits which characteri-
ze the individual device functions. The individual bits have the following meaning:

Mask Meaning (for set bit)

0x8000 device allows positioning to file start

0x4000 a file must be opened (under RTOS-UH only possible as REWIND) before using,
and closed after using.

0x2000 If CR ends a line, it should be replaced by CR+LF (only for outputs to this devi ce).
0x1000 The device is capable of dialog (serial interface, terminal)

0x0800 For serial interfaces: no echo should be generated.

0x0400 deletion of files is possible (commands RM and ERASE)

0x0200 data output is possible through the device.

0x0100 data input is possible through the device.

0x0080 The device can supply a list of available files (the command DIR is permitted)
0x0040 The device can be formatted (the command FORM is accepted).

0x0020 The device accepts the command CF..

0x0010 The device knows subdirectories (the commands MKDIR and RMDIR are permit
ted).

0x0008 Free positioning within files on the device.

45/52

0x0004 Reserved.

0x0002 For serial interfaces: The terminal does not jump automatically to the next line when it
exceeds the last column of a line (no auto wrap)

0x0001 for serial interfaces: cursor control should take place for VT52 via ESC sequences
(standard is TELEVIDEO compatibility)

Tabelle 5-8: Device parameters - the individual bits

After the system start these parameter blocks are supplied with standard values. These values can
be changed for setting other operating modes within the scope of the possibilities of the individual
devices with the command SD

SD /Gerédtename/ Parameter

These parameter bits do not control the behaviour of the individual devices (support tasks) but only
serve as information for other programs on the way the device wants to be treated. The individual
support tasks base their behaviour on the control information received with the CE alone.

Operating system programs poll these parameters and base their behaviour on this, a COPY, for
example, makes a REWIND on a Ramdisk file before use and a CLOSE after use, not for a serial
interface however, according to the parameter set for the respective device.

5.5.2 Serial Interfaces /Ax, /Bx, /Cx, /IDx

The serial interfaces of an RTOS-UH computer are called /Ax, /Bx, /Cx and /Dx. Support tasks for
an interface are #ACIAx (#SCCx, #RS232) and #SOUTYX, the identification x is counted hexadeci-
mally for the number of available interfaces. The letter A, B, C or D identifies different operating
modes of the same interface.

A serial interface /Ax has for example the device parameters 3300, i.e. the device is a dialog-
capable data terminal ($1000) and allows output ($0200) and input ($0100). It is also desired that
system programs extend ending CRs with an LF for outputs through this device ($2000). The echo
of input characters should take place. The general function of a serial interface under RTOS-UH is
as follows:

5.5.2.1 Output

The data contained in the CE are output. If the serial interface receives an XOFF during the output
or an XOFF was received before starting the output, the output is stopped until receiving an XON.
Blocking by XOFF can be cancelled by the operating command

SB Gerédtename Baudrate

(Set Baudrate). If the RTOS-UH implementation supports the RTS/CTS hardware protocol, the
CTS status Low, i.e. line level <2.2 V, is handled identically to a received XOFF.

Outputs via /Dx can take place while /Ax, /Bx or /Cx inputs are active, i.e. input CEs are being pro-
cessed.

5.5.2.2 Input

Inputs can only be made via the interfaces with the identifications A, B and C. The responsible
support task is #ACIAx. The behaviour of the interface in the input depends on its identification
(from the DRIVE of the CE) and the MODE of the CE. The identification enables the following diffe-
rentiations:

46/52

» Identification A - unbuffered operation

The CE is filled up with the characters which arrive through the support task when processing
of the CE begins. Processing of the CE is ended after arrival of RECLEN characters or the re-
ception of one of the characters CR, LF or EOT (depending on MODMCR, MODMLF and
MODMEO). No XOFF is sent. The reception buffer for the buffered operation is deleted.

» Identification B - buffered operation

The CE is filled first from a reception buffer (length implementation-dependent, usually 32 cha-
racters) which is also used by the interrupt routine in the absence of a CE. If the reception buf-
fer is empty an XON is sent to start the transmitter. Other characters are taken directly from the
input data flow. Processing of the CE is ended after entering RECLEN characters or receiving
one of the characters CR, LF or EOT (depending on MODMCR, MODMLF and MODMEO)..

» Identification C - buffered operation, only empty buffer

The behaviour is the same as for identification B except that characters from the input data flow
are not waited for. The CE is first filled from the reception buffer. If RECLEN or an abort condi-
tion is satisfied, the CE is returned, otherwise the CE is filled up to the RECLEN characters
with 0 and returned. Arrival of characters through the interface is not waited for.

The duplex channel addressable under the mnemo D warrants no special mention at this point.

5.5.2.3 Rest Status

The behaviour of the serial interface in the rest status, i.e. if no CE is being processed, depends on
the operating mode of the previous use, i..e. after the MODE and DRIVE of the previous CE, also
of a previous output CE. The outputs should therefore also be made with the identification desired
for inputs.

All incoming characters are transferred to a reception buffer. When this buffer is full, the last recei-
ved character is overwritten..

If the interface was used previously in buffered operation, an XOFF is sent starting at half buffer
filling for every received character to halt the transmitter.

If the interface was used in binary operation, no XOFF is sent; if the interface supports the
RTS/CTS protocol (implementation-dependent), RTS is set to LOW (line level <0.8 V) instead.

5.5.2.4 The Effect of MODE

The meaning of MODMWA, MODMOU and NERR is self-explanatory. MODMCR, MODMLF and
MODMEO act in input and output. IOCEF is not set, EXCLU not taken into account. Only 7 makes
any sense as a job number.

« MODMSC

If this bit is not set, access to the operating interpreter can be requested by entering A or "B
(activation of the task #USERX). If an input CE is just being processed, these characters are
not transferred to the CE, i.e. the input is completed regularly. The input CE generated by the
USER takes its parameterization from the type of request: if *A was received, the command in-
put is requested in A mode, with ~B, however, in B-mode. This makes it possible to assess the
characters received before the input CE of the operating interpreter arrives as part of a com-
mand.

* MODMNE

47/52

If MODMNE is not set, entered characters are output simultaneously when transferring to a CE
(see also MODBIN). The echo takes place for example in B mode not with transfer to the re-
ception buffer (i.e. in the rest status) but not until after transfer to a CE.I In B mode the received
characters are output without transformation, in the A mode, control characters (characters less
than $20, the blank) are outputas " ".

« MODBIN

If MODBIN is not set, the XON/XOFF protocol is switched on. In addition, the top bit is deleted
for received characters. If MODBIN is switched on, the XON/XOFF protocol is switched off;
operating system-internal implementations which support the RTS/CTS protocol use this. In
addition all received characters are transferred to the receive buffer or the CE. The Edit functi-
on (see below) of the interfaces is switched off, an echo of incoming characters does not take
place.

5.5.2.5 Edit Function
In the input, it is possible to change the input text with the following special characters:

- Cursor left, backspace ("H) and Delete position one character back in the CE if possible, i.e.
delete the character which has just been received. As an echo, "H, a blank and *H again are
output.

- Cursor right (L) leaves the character in the CE unchanged at the current position. This cha-
racter is output as an echo to L.

These special characters are not transferred to the CE. The Edit function is in binary mode
(MODBIN) and switched off for set MODMSC.

5.5.3 The Ramdisk - /ED, /EDB

In almost every RTOS-UH system, the Ramdisk exists as a file-oriented memory medium. The files
of the Ramdisk are addressed by a device and path specification, e.g. /[ED/test addresses the test
file. In the path specification, directories and subdirectories can also be used, e.g. /ED/Heinz/test
addresses the test file in the Heinz directory. Directories and subdirectories do not need to be
created explicitly. The use of Ramdisk is relatively easy with this information:

*COPY /A1/>/ED/test

starts a copying process from the system interface in A mode to the test file. The COPY/xx subtask
then examines the device parameters of the devices concerned first and determines that a file of
the Ramdisk needs to be opened before use (as in CE1 of the above example). It also determines
that /Al is a dialog-capable data terminal which wants to be processed with echo and therefore
outputs a = for identifying the readiness for input (to simplify operation). Then it requests an input
from /Al as in CE2 of the example. In the IOBUF of CE2 the rest of the outputs of the equal sign
can be observed. With the inputs

=MODULE TEST;
=MODEND

=@

48/52

the input lines are copied into the test file. Every single entered character is echoed on the screen;
the individual lines are terminated with CR in the input. The character echoed as is entered as D
(ASCII EOT, End of Text) and identifies the end of file.. The subtask recognizes the (entering) file
end, closes the test file and ends its activity with the message

>> COPY/xx: (TERMI).
The entered text is now contained in the file and can for example be output on the screen with
TYPE /ED/test

With L or LU it can also be determined that the COPY and TYPE subtask are no longer available in
the system at the end of their task. With S it can be determined that a memory segment of the
EDFT type now exists and contains the file test.. An overview of the existing files can be obtained
with the command

DIR /ED/
If
>> —-??--: (TERMI).

should appear as a terminating message of a COPY or TYPE command this is not a sign of dama-
ge to the operating system but points to the fact that the memory segment containing the subtask
has already been assigned and used otherwise before the end message was output. The name of
the subtask can no longer be identified in this case.

It is possible to delete the file with the commands
RM /ED/test

(engl. ReMove, dt. Entfernen) oder
ERASE /ED/test

Files in the Ramdisk are stored in compressed, line-oriented form. Because of the compression
algorithm only 7-bit ASCII data may be contained in files in the /ED. If other data are also to be
stored in Ramdisk files, the device /EDB is available for this. This operates without data compres-
sion; the handling is otherwise identical with /ED.

5.5.4 NI, IVOI

The virtual data station provides data channels under different file names. The specification of di-
rectories and subdirectories is also possible, these do not need to be set up explicitly however.

/V1 only allows inputs, i.e. only read access is possible to /VI. With
*CP /VI1/kanall > /ED/test2

a copying process is started which reads out of the input channel with the filenames channell and
the read characters copied to the Ramdisk, file test2.

/VO on the other hand can only be used as an output device. A virtual data channel is identified by
the same file name for /VI and /VO. With

*COPY /A1/> /VO/kanall

a copying process from the system interface (recognizable from the output of the equal sign as an
input prompt) to data channel channell is started. Since the data from this data channel are trans-

49/52

ferred to the file test2 of the Ramdisk with the previous COPY command, this represents only a
complicated alternative of the command COPY /Al/>/ED/test2.

With the inputs

=MODULE TEST2;

=MODEND ;

=@

text can then be input in the file test2. The end of input by "D (is displayed as on the screen)
both COPY/xx subtasks are terminated, recognizable from the two TERMI messages.

Single input and output channels can be emptied with RM /VI/channel name or RM/VO/channel
name. The CEs contained are returned to the initiating tasks in this case. In the CEs it is noted first
that the input or output procedure could not be performed successfully.

50/52

51/52

8 Tables

Tabelie 5-8:

[&

52/52
IEP GmbH « Am Pferdemarkt 9c « D-30853 Langenhagen ¢ Tel.: +49 (511) 70832-0 « Fax: +49 (511) 70832-99 « E-Mail: info@iep.de
Web: http://www.iep.de T:\doku\tasks\TASKen.DOC, 05.07.2000

	Contents
	Realtime-Systems
	Solutions
	Responsiveness and Interrupts
	Multitasking
	The RTOS-UH Offer

	RTOS-UH - The Operating System
	Tasks and Tasking
	Task-Properties
	Task Name
	Status
	Priority
	Memory Requirement
	Resident Tasks
	Autostart Capability

	Multi-Tasking
	Task Statuses
	DORM
	RUN
	SUSP
	SCHD
	I/O?
	PWS?
	CWS?
	????

	Task Status Changes
	Activate
	Terminate
	Suspend
	Continue
	Planning In
	Plan Out
	Synchronization Operations
	Semaphores
	Bolts

	Event Entry
	Überblick über Taskzustandsübergänge

	Interrupt Routines
	Timer-Interrupt
	Interface Interrupt
	Floppy-Interrupt

	System Tasks
	Support Tasks and Data Stations
	IDLE
	USER
	XCMMD
	ACIA, SCC, RS232
	SOUT
	EDFM
	ERROR
	UHFM
	VDATN
	NIL
	PPROT

	First Steps
	System Start
	Computer Configuration with External Terminal
	Computer Configuration with Integrated Terminal

	Making Contact
	The System Message
	The Memory Structure
	Die Taskzustände

	Some Examples
	Input of Commands
	Generation of Tasks
	Chronological Planning Ins
	Interrupt Planning Ins
	Suspend and Continue

	The I/O System
	Queues
	LDNs, Drives and Device Names
	Structure and Use of CEs
	Request a CE
	Filling in a CE
	Execution of the Input or Output
	Evaluation and Enable of a CE

	Example
	Devices and Data Stations
	Device Parameters
	Serial Interfaces /Ax, /Bx, /Cx, /Dx
	Output
	Input
	Rest Status
	The Effect of MODE
	Edit Function

	The Ramdisk - /ED, /EDB
	/VI/, /VO/

	Figures
	Tables

