Ingenieurbtro flr Echtzeitprogrammierung I E P

RT-Debug

Source level debugging for ANSI-C and PEARL

= |:||x
=10l x|
= (void) ; // aus Fdluser.c2l
e
=2 1P micmeain ok :
e (¢/ for Debugging
D Inchades char buffer[256] :
[Fask: L7M [L7M] o0l setubuf(STLME, buffer, _IOLBFI|_IONWAIT, sizeof(|
‘rB'S;",_ rs'::z"“ r mrergueT |)
[BREAKED : .
™ ACTY CTA | ExcEPTION if (Init_Comm(protocolData, dprData))
IS0 e ¢ . =]
I~ ICE? I~ WA B Uersion() ; Mocule: d\crestiree!k-objystd3debugtfie
™ cws? T | FiN /¢ FDL_Task() ; Function:
SEMA | [FWC ouT ey
"GP rio I~ OVER CyclicTimer10() : = ™ redout
= _base DxI0001130

LUSERBF 00034382 UARBLOCK() & _bsiz 000000100 | 256

& _cnt 0x00000000 | 0

printf("L7M bereit.. B> _pir 000001130
S _flag DD0002EA | BB
& il 0x0007 11

T micpmZ7one ob] for () S temp B0

-2 it J (& _ch 0M00D

5 j:;:m;:j::; > Comm() ; = o 0x00000000

g Pmfmatemody rt_resume_after(S(5™ _infa

[IFmitms func obj] & [dn 0000

(410 IPmidri_diat.obi j] € mode 0x0000]0

(4 IFmA7madpr o) } & drive 0x0000(0

[IFmATenird obf = T fle_namea Size =64

[2 IFmAli=m o

[Fmiifunc oki =l Ls1 T

[

Remote debugging gives the full comfort of a graphical environ- Remote
ment during the program development targeting small systems.)
The separation between an efficient user interface and a small Deb u g g N g

debugger kernel assures the almost undisturbed program behavior
on the target system.

With a connection to the target system through standard networks,
even remote debugging over the internet is possible.

The analysis of program behavior is constantly done on source
level. Whether a program is written using Crest-C or UH-PEARL, SOU rce Ievel
RT-Debug has access to all program objects and considers the Project x|

characteristics of the individual languages.

The program flow is shown in the source code. Access to variables
is strongly typed, also for user-defined data types. RT-Debug is " PEARL 490
aware of the multitasking environment and hands full control of the
programs execution under the realtime operating system RTOS-
UH to the user.

Break- and watchpoints provide for detailled examination of a pro-
grams state and flow with minimal disruptions.

& CREST-C

Crash analysis

Tasking control

Task: L7M [L7M =101
Block—— ~Sched)~ \rERRUPT
LI MAC | I BReakeD
FacT? | IFTA | - EvcepTioN
¥ SUSP | I CA
i Fwa | T NEWTASK
- CWs? CTC | riN
[~ SEMA CWC | ™ ouT
- GP rio | rover

Quick Watch

Function:

2™ (stdouf)

& (*_ptn)

& _ch 0400

? (*feh)
=™ _info

B mode
L & drive 0

EERES stdout D0DIED4AL

‘ Variable: stdout [0x206(A4) == 0x00
Module: d\crestitree\k-ob)\stdddebug filz. ob)

5% hase 0:DO0DIE4
€ (*_bass) Mekd] 160
& _bsiz (00000100 | 256
& _ent 000000000] 0
9% _ptr 0O00DTE44

1| 160

© _flag 00000214538
& file BO001 1
& _temp 0x00|0

0

<% _fek 0x00000000

& ldn 00|0

0000 |0
x0000|0

=% fle_name Size =64
QY IE_1QNIE] 1Y) ALY | U

= £ file_namef19] 0x00(0

Even in the case of catastrophic program aborts such as bus- or
address errors RT-Debug offers support.

Callstack and backtrace allow to inspect the program behavior
before a crash. At each point in the callstack, the program state is
displayed in the correct context. Seeing the valid values of varia-
bles eases the detection of either algorithmic or tasking-based
programming errors as far as possible. For special cases, access
to assembler code, register contents and administrative task data
is provided.

RT-Debug shows the current state of the task under control in a
task state window.

The continuous display of the task state provides a precise insight
into the runtime behavior. Special events are logged in a message
pane.

A task can be interrupted at any time. The current program posi-
tion is graphically shown in the source code window.

For exact control of the program flow, controlled program execu-
tion is provided by the instructions:

e Step in — executes the program in a single step mode

e Step Out — stops at the return from the current procedure

e Step Over — stops after returning from a procedure call
Breakpoints for systematic interruption of program execution are
set directly in the source code window.

Watchpoints allow to take a snapshot of all variables currently in
scope with minimal disruption of program flow.

The values of all local and global variables can be inspected using
the quickwatch window. Variables of complex data types are
shown in a tree view, selective opening of sub-elements gives a
quick overview and simple access to member variables. Different
symbols for different data types give a concise view, even when
working on larger projects.

Mame sidout |

Type struct (*stdout) : |

Address 0x206(Ad) == Dx000BBD22 |

Cancel |

A Quick Watch dialog shows all available information about indi-
vidual variables or members of structured data and allows to
change their values.

DEBUG.DOC

RT-Debug presents all available project information in clear, hier- Proj ect
archical form. Dependencies between the individual translation) .
units as well as the linked libraries are visualized in order to ease Ol’g anization
the navigation in the source code.
pebugger - D:\DP\cmain.c . =@ x|
Project TCPAP Tasks Tasking Stepping Breakpoints [nfos Edit Ansicht Fenster 2
£ 17m.dp il M [=1ES || D:\DP\cmain.c —loix|
=8 Single Ohjects 3} =
£ #-d Drcresteresiclb-BEK Y start obi
b0 IPmicmein.ob)
= pDPCmaln ¢
{ L L noludes JIeDoenoen
LA Fmdoomim ok /* main x/
Z 0 [Tmimemdpr obi /s f
: 4_-_‘|I7m!mammy.ab|‘
L [mikiZeiab .
U i ob void
©OE L T ok
| P2 ohi main(void)
L TrTeEpm obi
L& ITmiprlTepm? obj
o 32 [FmiprTmoob) {
2 Fmdruntime obi extern void CyclicTimer10(void) ; // aus Timer.h
| G mieioby | extern uoid UARBLOCK (void) ; // aus fdluser.c
o e [mddpm? dpr o)
£ - Pmidpm fsm.ob) .
| i fune ob) (// for Debugging
{7 ime o) char buffer[256] ;
| F D iTitpm2sipr.ob @ setubuf(stdout, buffer, _IOLBF|_IONWAIT, sizeof(buffer)) ;
[) [7midpm2fsm. obj }
Lo) [7midpm2runc ok
L 7midpm2time o)
| msimaT s b @] if { Init_Comm(protocolData, dprData))
) _:ui‘m!fma?!un: ol (
| Uersion() ;
Oy Tmddrt_det obi // FDL_Task() ;
o Q2 [FmATmdar oby
{ i [TmA7mind obj @ CyclicTimer10() ;
P _l|lim.lllnsmuk1
i Sl © UARBLOCK() ;
EoEe g IPmifclauto ob
| B il tcuner o @ printf(“L7M bereit...\n") :
L E 2 [Fmiffromfdl ok
{2 s ok For (::)
: +-24 [miphyscal ghi
| Pridebug oty @ Comm() ;
+ 2) tiects rem Linery ©] rt_resume_after(50) ;
}
}
} -
L Er
oM ||
The individual source files are accessable simply and quickly by
navigation in the project tree. The simultaneous display of several
source code panes gives an optimal view to the program flow.
Break- and Watchpoints are shown in the source code, different
colors allow to differentiate between possible, active and hitten
points.
When a breakpoint is hit, the program execution is suspended, all
guickwatch windows are refreshed and the current point of execu-
tion is shown graphically in the source code.
On the hit of a watchpoint, program execution is interrupted only to
refresh the quickwatch windows and is resumed immediately
thereafter.
DEBUG.DOC 3

Target systems

Development
system

RT-Debug is available for all systems based on RTOS-UH using
either PowerPC or the 68xxx-family. A small debugger kernel in
the target system communicates with the comfortable user inter-
face using the TCP/IP protocol. The target can be connected either
serial or by network.

The debugger kernel provides basic debugging functions. Apart
from the manipulation of storage areas he sets or resets break-
points, observes task condition changes and recognizes special
events during task execution. All actions are initiated by the devel-
opment computer.

The separation of the debugger into a kernel with elementary basic
functions and a comfortable user interface on a commonly used
workstation leads to a very small load of the target system. The
target system does not have to fulfill special requirements regard-
ing available memory or computational power. Even programs
targeting small systems with little or no disks can be debugged
comfortably without special hardware support. No external debug-
ging tools are needed.

The development computer presents the main functionality of the
debugger. It translates the source files, analyzes and interprets the
debug informations of the compilers and gives a concise view of
the program flow. The user interface follows the Look and Feel of
the operating system.

All versions of the Microsoft Windows desktop or server operating
system since Windows 95 are supported.

Coupling the target systems to the development system by net-
work allows to separate the location of target from the workstation.
Debug sessions can be made even over the Internet.

IEP GmbH e Am Pferdemarkt 9c e D-30853 Langenhagen e Tel.: +49 (511) 70832-0 e Fax: +49 (511) 70832-99 e E-Mail: info@iep.de

Web: http://www.iep.de

DEBUG.DOC, 22.11.2017

