
Ingenieurbüro für Echtzeitprogrammierung

ANSI-C is one of the most flexible and most common programming
languages at all. C does not target specific areas of application,
but instead provides the programmer with all tools necessary to
solve the problems at hand. With the standardization of ANSI-C,
featuring strict type testing and prototyping, programming in C at-
tains the security which is mandatory for the deployment under a
multitasking realtime operating system.

CREST-C is especially designed to support the realtime operating
system RTOS-UH. An expressed goal of this development was to
make a reliable programming system available, which also provi-
des for cross-development under numerous guest operating sy-
stems like e.g. Microsoft Windows, UNIX etc. Special attention was
paid on compactness and efficiency of the generated code.
CREST-C provides a hosted implementation of the ANSI-C stan-
dard X3.159-1989 (ISO/IEC 9899:1990) and is also usable as
freestanding implementation.

CREST-C allows to port lots of already available sources to RTOS-
UH and to reuse existing code also under the realtime-oriented
environment of RTOS-UH. The successful ports of various free
sources show the reliability of the CREST compiler.

Using C, even extremely time-critical driver programming can be
done using a high-level language instead of assembler. Coding of
interrupt handlers and their integration within the self-configuration
of RTOS-UH are completely supported.

As hosted implementation of the C89-standard, CREST-C gene-
rates code following the RTOS-UH model of a shell-module on
default. These modules can be called by the command interpreter
and provide for parameter transfer by the command-line. Each call
generates a new instance of the module, so multiple instances can
act in parallel. The multi-user model of RTOS-UH is supported.
The generation of single-task programs is possible also. Tasks and
subtasks can be generated at runtime, the coding of system tasks
and interrupt handlers is supported.

Crest-C
ANSI-C for RTOS-UH

Why C

CREST-C

Versatile

System
programming

Tasking

IEP GmbH • Am Pferdemarkt 9c • D-30853 Langenhagen • Tel.: +49 (511) 70832-0 • Fax: +49 (511) 70832-99 • E-Mail: info@iep.de
Web: http://www.iep.de Crest.doc, 20.11.2012

CREST-C was developed particularly according to the specifica-
tions of the RTOS-UH operating system and provides all realtime
and multitasking possibilities of the system by the means of a run-
time-library. By the excellent code quality of the CREST-C compi-
ler, there is no reason to code in assembler. Nevertheless, an in-
line-Assembler is included.

Aside from loadable code, CREST-C can generate ROM-able
code. A linker can be used to bind the objects to a given base
address and generate a binary image, which is directly rommable.
Depending of the target processor, even position independant
code can be generated.
To conserve ROM space, frequently used functions can be com-
bined to a shared library. The linker can be instructed to bind mo-
dules to the shared library, so the library can be used simultane-
ously by multiple modules.

To the PEARL-programmer, CREST-C offers the possibility to mi-
grate to a more flexible language concept. S-Records, generated
by the UH PEARL compiler, can be linked with S-Records gene-
rated by CREST-C. Both sides can benefit: PEARL-programs can
use proven C-software, as well as C-programmers can resort to
established PEARL-librarys.

CREST-68K supports processors of the M68K-Familie; a floating
point unit, if available, is supported:
• MC68000, MC68010, MC68302...
• MC68020, MC68020/MC68881, MC68030/MC68882...
• MC68040, MC68060
• CPU32, CPU32+

CREST-PPC supports processors of the power PC family:
• MPC603, MPC604, MPC750 , ...
• MPC5xx, MPC8xx, MPC82xx. ...

ANSI-C standard libraries for the respective processor family are in
the standard scope of supply. They are delivered in different
translation variants, so for each application, the user can select the
appropriate library.

CREST-C is available either as generic compiler, running under
RTOS-UH, or as cross-compiler for all 32-bit Microsoft Windows
operating systems since Windows 95. All tools for a complete de-
velopment cycle are included: the sources can be translated to
either loadable or rommable objects. Testing and debugging takes
place on the RTOS-UH-target, a debugger is available separately.

Realtime
behavior

ROM ability

PEARL interface

Target systems

Libraries

Cross
development

	Crest-C

